Advanced Materials Science and Engineering of Carbon

Advanced Materials Science and Engineering of Carbon

Author: Michio Inagaki

Publisher: Butterworth-Heinemann

Published: 2013-09-25

Total Pages: 0

ISBN-13: 9780124077898

DOWNLOAD EBOOK

Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.


Materials Science and Engineering

Materials Science and Engineering

Author: William D. Callister

Publisher: John Wiley & Sons

Published: 2011

Total Pages: 122

ISBN-13: 9780470505861

DOWNLOAD EBOOK

Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.


Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications

Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2017-01-11

Total Pages: 1837

ISBN-13: 1522517995

DOWNLOAD EBOOK

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.


Advanced Materials in Automotive Engineering

Advanced Materials in Automotive Engineering

Author: Jason Rowe

Publisher: Elsevier

Published: 2012-02-21

Total Pages: 353

ISBN-13: 0857095463

DOWNLOAD EBOOK

The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials


Engineering Materials 2

Engineering Materials 2

Author: Michael F. Ashby

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 380

ISBN-13: 1483297217

DOWNLOAD EBOOK

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.


Materials Science and Engineering for the 1990s

Materials Science and Engineering for the 1990s

Author: National Research Council

Publisher: National Academies Press

Published: 1989-02-01

Total Pages: 322

ISBN-13: 0309039282

DOWNLOAD EBOOK

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.


Advanced Materials Research

Advanced Materials Research

Author: Stanislav Kolisnychenko

Publisher: Trans Tech Publications Ltd

Published: 2018-11-13

Total Pages: 110

ISBN-13: 3035735441

DOWNLOAD EBOOK

Special topic volume with invited peer reviewed papers only


Integrated Computational Materials Engineering (ICME) for Metals

Integrated Computational Materials Engineering (ICME) for Metals

Author: Mark F. Horstemeyer

Publisher: John Wiley & Sons

Published: 2012-06-07

Total Pages: 474

ISBN-13: 1118342658

DOWNLOAD EBOOK

State-of-the-technology tools for designing, optimizing, and manufacturing new materials Integrated computational materials engineering (ICME) uses computational materials science tools within a holistic system in order to accelerate materials development, improve design optimization, and unify design and manufacturing. Increasingly, ICME is the preferred paradigm for design, development, and manufacturing of structural products. Written by one of the world's leading ICME experts, this text delivers a comprehensive, practical introduction to the field, guiding readers through multiscale materials processing modeling and simulation with easy-to-follow explanations and examples. Following an introductory chapter exploring the core concepts and the various disciplines that have contributed to the development of ICME, the text covers the following important topics with their associated length scale bridging methodologies: Macroscale continuum internal state variable plasticity and damage theory and multistage fatigue Mesoscale analysis: continuum theory methods with discrete features and methods Discrete dislocation dynamics simulations Atomistic modeling methods Electronics structures calculations Next, the author provides three chapters dedicated to detailed case studies, including "From Atoms to Autos: A Redesign of a Cadillac Control Arm," that show how the principles and methods of ICME work in practice. The final chapter examines the future of ICME, forecasting the development of new materials and engineering structures with the help of a cyberinfrastructure that has been recently established. Integrated Computational Materials Engineering (ICME) for Metals is recommended for both students and professionals in engineering and materials science, providing them with new state-of-the-technology tools for selecting, designing, optimizing, and manufacturing new materials. Instructors who adopt this text for coursework can take advantage of PowerPoint lecture notes, a questions and solutions manual, and tutorials to guide students through the models and codes discussed in the text.


Advanced Materials and Sustainability in Civil Engineering

Advanced Materials and Sustainability in Civil Engineering

Author: Kiran Kumar Poloju

Publisher: Springer

Published: 2021-10-26

Total Pages: 56

ISBN-13: 9789811659485

DOWNLOAD EBOOK

This book discusses the detailed concepts of concrete and its development with pros and cons. Besides, the significance of various industrial wastes as partial replacements with concrete ingredients such as cement and aggregates are discussed. The creation of cement contributes to around 7% of carbon emissions into the atmosphere leading to greenhouse effect and global warming. Similarly, the wastes generated from various industries such as thermal, steel, ceramic, marble, paper and etc. shows the impact on atmosphere and leads to air pollution and land pollution. Thus, it is essential to focus on these wastes to use them in a profitable manner without compromising the current needs. This book discusses a few examples on studies of using various industry wastes as partial replacement of cement in concrete​