Pure Mathematics for Advanced Level, Second Edition is written to meet the needs of the student studying for the General Certificate of Education at Advanced Level. The text is organized into 22 chapters. Chapters 1-5 cover topics in algebra such as operations with real numbers, the binomial theorem, and the quadratic function and the quadratic equation. The principles, methods and techniques in calculus, trigonometry, and co-ordinate geometry are provided as well. Two new chapters have been added: Numerical Methods and Vectors. Mathematics students will find this book extremely useful.
New 2017 Cambridge A Level Maths and Further Maths resources to help students with learning and revision. Written for the AQA AS/A Level Further Mathematics specifications for first teaching from 2017, this print Student Book covers the compulsory content for AS and the first year of A Level. It balances accessible exposition with a wealth of worked examples, exercises and opportunities to test and consolidate learning, providing a clear and structured pathway for progressing through the course. It is underpinned by a strong pedagogical approach, with an emphasis on skills development and the synoptic nature of the course. Includes answers to aid independent study. This book has entered an AQA approval process.
Written to match the contents of the Cambridge syllabus. Pure Mathematics 1 corresponds to unit P1. It covers quadratics, functions, coordinate geometry, circular measure, trigonometry, vectors, series, differentiation and integration.
New 2017 Cambridge A Level Maths and Further Maths resources help students with learning and revision. Written for the OCR AS/A Level Mathematics specifications for first teaching from 2017, this print Student Book covers the content for AS and the first year of A Level. It balances accessible exposition with a wealth of worked examples, exercises and opportunities to test and consolidate learning, providing a clear and structured pathway for progressing through the course. It is underpinned by a strong pedagogical approach, with an emphasis on skills development and the synoptic nature of the course. Includes answers to aid independent study.
Assuming GCSE as a starting point (National Curriculum Level 7/8), this A-Level mathematics text provides transitional material in the early chapters for students from a variety of mathematical backgrounds, and caters for a wide spread of ability. It contains the core for A-Level mathematics as outlined in all examination board syllabuses, and additional coverage is included to cater for the pure maths content of A-Level mathematics courses combining pure maths with mechanics / statistics / decision (discrete) maths, and the first half of A-Level pure mathematics.
Pure Mathematics 4 is written specifically for the Pure Mathematics 4 module of the new OCR Advanced Level Mathematics specification. Mathematical ideas are explained carefully and clearly, with many stimulating worked examples. There are plenty of exercises throughout, along with revision exercises - all written by experienced examiners.
This series has been developed specifically for the Cambridge International AS & A Level Mathematics (9709) syllabus to be examined from 2020. This title offers additional practice exercises for students following the Pure Mathematics 1 unit of the Cambridge International AS & A Level Mathematics syllabus (9709). The materials follow the same order as the corresponding coursebook and contain extra worked examples to help students understand the skills required of the syllabus. End-of-chapter review exercises are also provided to help students conduct self assessment, with answers at the back of the book to check understanding.
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
This new and expanded edition is intended to help candidates prepare for entrance examinations in mathematics and scientific subjects, including STEP (Sixth Term Examination Paper). STEP is an examination used by Cambridge Colleges for conditional offers in mathematics. They are also used by some other UK universities and many mathematics departments recommend that their applicants practice on the past papers even if they do not take the examination. Advanced Problems in Mathematics bridges the gap between school and university mathematics, and prepares students for an undergraduate mathematics course. The questions analysed in this book are all based on past STEP questions and each question is followed by a comment and a full solution. The comments direct the reader's attention to key points and put the question in its true mathematical context. The solutions point students to the methodology required to address advanced mathematical problems critically and independently. This book is a must read for any student wishing to apply to scientific subjects at university level and for anyone interested in advanced mathematics.