Transition Metal Oxides for Electrochemical Energy Storage Explore this authoritative handbook on transition metal oxides for energy storage Metal oxides have become one of the most important classes of materials in energy storage and conversion. They continue to have tremendous potential for research into new materials and devices in a wide variety of fields. Transition Metal Oxides for Electrochemical Energy Storage delivers an insightful, concise, and focused exploration of the science and applications of metal oxides in intercalation-based batteries, solid electrolytes for ionic conduction, pseudocapacitive charge storage, transport and 3D architectures and interfacial phenomena and defects. The book serves as a one-stop reference for materials researchers seeking foundational and applied knowledge of the titled material classes. Transition Metal Oxides offers readers in-depth information covering electrochemistry, morphology, and both in situ and in operando characterization. It also provides novel approaches to transition metal oxide-enabled energy storage, like interface engineering and three-dimensional nanoarchitectures. Readers will also benefit from the inclusion of: A thorough introduction to the landscape and solid-state chemistry of transition metal oxides for energy storage An exploration of electrochemical energy storage mechanisms in transition metal oxides, including intercalation, pseudocapacitance, and conversion Practical discussions of the electrochemistry of transition metal oxides, including oxide/electrolyte interfaces and energy storage in aqueous electrolytes An examination of the characterization of transition metal oxides for energy storage Perfect for materials scientists, electrochemists, inorganic chemists, and applied physicists, Transition Metal Oxides for Electrochemical Energy Storage will also earn a place in the libraries of engineers in power technology and professions working in the electrotechnical industry seeking a one-stop reference on transition metal oxides for energy storage.
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions
The three-volume handbook showcases the state of the art in the use of concentrated sunlight to produce electricity, industrial process heat, renewable fuels, including hydrogen and low-carbon synthesis gas, and valuable chemical commodities. The handbook illustrates the value and diversity of applications for concentrating solar power to contribute to the expanding decarbonization of multiple cross-cutting energy sectors.Volume 1: Concentrating Solar Thermal Power, provides an overview of key technologies, principles, and challenges of concentrating solar power (CSP) as well as the use of concentrating solar thermal for process heating and district markets. The ten chapters of this volume provide the reader with the technical background on the solar resource for concentrating solar thermal, the principles and design of concentrating optics, and descriptions of state-of-the-art and emerging solar collector and receiver technologies, thermal storage and thermal-to-electric conversion and power cycles for CSP. It also contains a comprehensive summary of operations and maintenance requirements for CSP plants, and commercial CSP plants and markets around the world.Volume 2, Solar Thermochemical Processes and Products, covers the use of concentrated solar radiation as the heat source to drive endothermic chemical reactions to produce renewable fuels and valuable chemical commodities, equivalently storing solar energy in chemical bonds. The thermodynamic underpinnings of a number of approaches to produce fuel and results of demonstrations of solar thermochemical reactors for these processes at prototype scale are presented. Processes presented include thermochemical metal oxide reduction/oxidation cycles to split water and carbon dioxide solar chemical looping reformation of methane to produce synthesis gas, high temperature electrochemistry, and gasification of biomass. Research on the thermochemical storage for CSP and high temperature production of cement and ammonia to illustrate the use concentrated solar energy to produce valuable chemical products are also included.Volume 3 contains reprinted archival papers to support and supplement the material in Volumes 1 and 2. These papers provide background information on the economics and alternative use cases of CSP not covered in Volume 1, and expand on the material related to the chapter topics presented in Volume 2. Potential commercialization, such as prototype and demonstration projects, are highlighted. The papers are intended as a starting point for a more in-depth study of the topics.
Electrolytes are indispensable components in electrochemistry and the fast-growing electrochemical energy storage markets. Research in electrolytes has witnessed exponential growth in recent years, accompanied by their applications in the most popular electrochemical cell ever invented, lithium-ion batteries (LIBs). In myriads of LIBs, electrolytes and their interphases determine how high the voltage of a battery is, how many times it can be charged/discharged, or how rapid the energy stored therein could be released. The conquest of further technical challenges around safety, life and cost-effectiveness of lithium-based or beyond-lithium batteries requires in-depth understanding of electrolytes and interphases. This will be the authoritative textbook for those entering the field. Chapters will establish the fundamental principles for the field, before moving onto important knowledge acquired in recent years. There will be special emphasis on linking these fundamentals to real-world problems encountered in devices, especially lithium-ion batteries. The book will be suitable for advanced undergraduate and postgraduate students in electrochemical energy storage, electrochemistry, materials science and engineering, as well as researchers new to the subject.
High-throughput technologies are those that allow the generation of large-scale data related to omic analysis (such as genomics, transcriptomics, proteomics, phenomics, and metabolomics). Currently, the development and use of these technologies has gone hand-in-hand with the development of bioinformatics tools, which have allowed the integration of omics-based data to understand crucial knowledge about the molecular systems that underlie the various functions of the plants. In recent years, there has been a huge development in the field of high-throughput biology, which is attributed to an era of tech startups. Genomics studies in plants, for instance, have benefited from advances in high-throughput technologies, such as high-throughput genotyping, which have allowed us to investigate the regulation and function of thousands of genes and genomic regions involved in a novel adaptation. In fact, with current high-throughput technologies, it is possible to recover substantial portions of the plant diversity, which is a key input for genetic improvement programs, food security and conservation programs. The integration of multilevel biological data, involving investigations at the molecular level (in genomics, transcriptomics, proteomics, and metabolomics, among others), have allowed more comprehensive studies, which broadens the opportunities to clarify key molecular aspects involved in the physiological responses to abiotic stresses.
Advances in Aerogel Composites for Environmental Remediation presents both contextual information aboutaerogels and details about their application in environmental remediation. A wide variety of aerogels are discussed, rangingfrom common to advanced and from natural to synthetic. By exploring ongoing research and developments in the environmentalremediation technologies using aerogel and its composites, this book addresses common day-to-day environmental problemsand presents solutions to the use of aerogel materials. The chapters discuss fabrication of various aerogel composites, alongwith their design and applications toward different environmental remediation technologies. Additionally, the properties andadvantages of aerogels are compared and contrasted to those of traditional materials. Given the consistent increase in environmental pollution, there is an urgent need to explore new materials for advances in remediationtechnology. Advances in Aerogel Composites for Environmental Remediation brings researchers and practitionersin the fields of environmental remediation, environmental science, and engineering to the forefront of remediation technologieswith a thorough breakdown of the benefits of and techniques relevant to aerogel composites. - Covers basic properties, unique properties, and fabrication techniques of aerogels, from basic silica aerogels topresent-day conventional aerogels - Discusses most of the major environmental remediation techniques and the advantages of using aerogels for theseremediation techniques in comparison to using traditional methods - Presents future prospects for utilizing aerogels in modern day-to-day life and in the fabrication of tangible new products
Coal and Coalbed Gas: Future Directions and Opportunities, Second Edition introduces the latest in coal geology research and the engineering of gas extraction. Importantly, the second edition examines how, over the last 10 years, research has both changed focus and where it is conducted. This shift essentially depicts "a tale of two worlds"—one half (Western Europe, North America) moving away from coal and coalbed gas research and production towards cleaner energy resources, and the other half (Asia–Pacific region, Eastern Europe, South America) increasing both research and usage of coal. These changes are marked by a precipitous fall in coalbed gas production in North America; however, at the same time there has been a significant rise in coal and coalbed gas production in Australia, China, and India. The driver for higher production and its associated research is a quest for affordable energy and economic security that a large resource base brings to any country like Australia's first large-scale coalbed gas to liquid natural gas projects supplying the demand for cleaner burning LNG to the Asian-Pacific region. Since the last edition of this book, global climate change policies have more forcibly emphasized the impact of methane from coal mines and placed these emissions equal to, or even more harmful than, CO2 emissions from fossil fuels in general. Governmental policies have prioritized capture, use, and storage of CO2, burning coal in new highly efficient low emission power plants, and gas pre-drainage of coal mines. The Organization for Economic Cooperation and Development (OECD) countries and China are also introducing new research into alternative, non-fuel uses for coal, such as carbon fibers, nanocarbons, graphene, soil amendments, and as an unconventional ore for critical elements. New to this edition: Each chapter is substantially changed from the 1st edition including expanded and new literature citations and reviews, important new data and information, new features and materials, as well as re-organized and re-designed themes. Importantly, three new chapters cover global coal endowment and gas potential, groundwater systems related to coalbed gas production and biogenic gas generation as well as the changing landscape of coal and coalbed gas influenced by global climate change and net-zero carbon greenhouse gas emissions. FOREWORD When I reviewed the first edition of this book, my initial thought was, "Do we need another book on coal geology?" and then I read it and realised, "Yes, we need this book" and my students downloaded copies as soon as it was available. So now we come to 2023, and a lot has happened in the past decade. For a different reason we might ask if we still need this book, or even coal geoscientists and engineers, as the world aims for rapid decarbonisation of the energy sector and a reduction of coal as a feedstock for industrial resources, like steel manufacture.