Advanced Control of AC / DC Power Networks

Advanced Control of AC / DC Power Networks

Author: Abdelkrim Benchaib

Publisher: John Wiley & Sons

Published: 2015-10-05

Total Pages: 164

ISBN-13: 1848218028

DOWNLOAD EBOOK

The power engineering domain is facing huge challenges, with an increasing interest in intermittent renewable energies which are imposing major technical limitations. Operating ever closer to their limits, the industry-standard AC power grids are subject to instabilities. This book presents an insight into DC grid systems, offering interesting issues to well controlled power grids, in contrast to current AC systems which provide the simplest and most economic connection method for short distances.


Advanced Control of Electrical Drives and Power Electronic Converters

Advanced Control of Electrical Drives and Power Electronic Converters

Author: Jacek Kabziński

Publisher: Springer

Published: 2016-09-30

Total Pages: 391

ISBN-13: 3319457357

DOWNLOAD EBOOK

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.


Ultra-High Voltage AC/DC Grids

Ultra-High Voltage AC/DC Grids

Author: Zhenya Liu

Publisher: Academic Press

Published: 2014-12-11

Total Pages: 758

ISBN-13: 0128023600

DOWNLOAD EBOOK

The UHV transmission has many advantages for new power networks due to its capacity, long distance potential, high efficiency, and low loss. Development of UHV transmission technology is led by infrastructure development and renewal, as well as smart grid developments, which can use UHV power networks as the transmission backbone for hydropower, coal, nuclear power and large renewable energy bases. Over the years, State Grid Corporation of China has developed a leading position in UHV core technology R&D, equipment development, plus construction experience, standards development and operational management. SGCC built the most advanced technology 'two AC and two DC' UHV projects with the highest voltage-class and largest transmission capacity in the world, with a cumulative power transmission of 10TWh. This book comprehensively summarizes the research achievement, theoretical innovation and engineering practice in UHV power grid construction in China since 2005. It covers the key technology and parameters used in the design of the UHV transmission network, shows readers the technical problems State Grid encountered during the construction, and the solution they come up with. It also introduces key technology like UHV series compensation, DC converter valve, and the systematic standards and norms. Discusses technical characteristics and advantages of using of AC/DC transmission system Includes applications and technical standards of UHV technologies Provides insight and case studies into a technology area that is developing worldwide Introduces the technical difficulties encountered in design and construction phase and provides solutions


Advanced DC-DC Power Converters and Switching Converters

Advanced DC-DC Power Converters and Switching Converters

Author: Salvatore Musumeci

Publisher: MDPI

Published: 2021-03-30

Total Pages: 188

ISBN-13: 303650446X

DOWNLOAD EBOOK

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Advanced Control Methodologies For Power Converter Systems

Advanced Control Methodologies For Power Converter Systems

Author: Wensheng Luo

Publisher: Springer Nature

Published: 2022-02-16

Total Pages: 218

ISBN-13: 3030942899

DOWNLOAD EBOOK

This book aims to present some advanced control methodologies for power converters. Power electronic converters have become indispensable devices for plenty of industrial applications over the last decades. Composed by controllable power switches, they can be controlled by effective strategies to achieve desirable transient response and steady-state performance, to ensure the stability, reliability and safety of the system. The most popular control strategy of power converters is the linear proportional–integral–derivative series control which is adopted as industry standard. However, when there exist parameter changes, nonlinearities and load disturbances in the system, the performance of the controller will be significantly degraded. To overcome this problem, many advanced control methodologies and techniques have been developed to improve the converter performance. This book presents the research work on some advanced control methodologies for several types of power converters, including three-phase two-level AC/DC power converter, three-phase NPC AC/DC power converter, and DC/DC buck converter. The effectiveness and advantage of the proposed control strategies are verified via simulations and experiments. The content of this book can be divided into two parts. The first part focuses on disturbance observer-based control methods for power converters under investigation. The second part investigates intelligent control methods. These methodologies provide a framework for controller design, observer design, stability and performance analysis for the considered power converter systems.


Medium-Voltage Direct Current Grid

Medium-Voltage Direct Current Grid

Author: M. M. Eissa

Publisher: Academic Press

Published: 2019-05-03

Total Pages: 232

ISBN-13: 0128145617

DOWNLOAD EBOOK

Medium Voltage Direct Current Grid is the first comprehensive reference to provide advanced methods and best practices with case studies to Medium Voltage Direct Current Grid (MVDC) for Resilience Operation, Protection and Control. It also provides technical details to tackle emerging challenges, and discuss knowledge and best practices about Modeling and Operation, Energy management of MVDC grid, MVDC Grid Protection, Power quality management of MVDC grid, Power quality analysis and control methods, AC/DC, DC/DC modular power converter, Renewable energy applications and Energy storage technologies. In addition, includes support to end users to integrate their systems to smart grid. Covers advanced methods and global case studies for reference Provides technical details and best practices for the individual modeling and operation of MVDC systems Includes guidance to tackle emerging challenges and support users in integrating their systems to smart grids


VSC-FACTS-HVDC

VSC-FACTS-HVDC

Author: Enrique Acha

Publisher: John Wiley & Sons

Published: 2019-08-05

Total Pages: 414

ISBN-13: 1119973988

DOWNLOAD EBOOK

An authoritative reference on the new generation of VSC-FACTS and VSC-HVDC systems and their applicability within current and future power systems VSC-FACTS-HVDC and PMU: Analysis, Modelling and Simulation in Power Grids provides comprehensive coverage of VSC-FACTS and VSC-HVDC systems within the context of high-voltage Smart Grids modelling and simulation. Readers are presented with an examination of the advanced computer modelling of the VSC-FACTS and VSC-HVDC systems for steady-state, optimal solutions, state estimation and transient stability analyses, including numerous case studies for the reader to gain hands-on experience in the use of models and concepts. Key features: Wide-ranging treatment of the VSC achieved by assessing basic operating principles, topology structures, control algorithms and utility-level applications. Detailed advanced models of VSC-FACTS and VSC-HVDC equipment, suitable for a wide range of power network-wide studies, such as power flows, optimal power flows, state estimation and dynamic simulations. Contains numerous case studies and practical examples, including cases of multi-terminal VSC-HVDC systems. Includes a companion website featuring MATLAB software and Power System Computer Aided Design (PSCAD) scripts which are provided to enable the reader to gain hands-on experience. Detailed coverage of electromagnetic transient studies of VSC-FACTS and VSC-HVDC systems using the de-facto industry standard PSCAD/EMTDC simulation package. An essential guide for utility engineers, academics, and research students as well as industry managers, engineers in equipment design and manufacturing, and consultants.