This book comprises the second half of a quantum field theory (QFT) course for graduate students. It gives a concise introduction to advanced concepts that are important for research in elementary particle theory. Topics include the path integral, loop expansion, Feynman rules, various regularization methods, renormalization, running couplings and the renormalization group, fixed points and asymptotic freedom, effective action, Coleman-Weinberg effective potential, fermions, the axial anomaly, QED, gauge fixing, nonabelian gauge theories, unitarity, optical theorem, Slavnov-Taylor identities, beta function of Yang-Mills theory, a heuristic derivation of asymptotic freedom, instantons in SU(N) gauge theory, theta vacua and the strong CP problem. Exercises are included and are intended for advanced graduate students or postdocs seeking to deepen their understanding of QFT.
Since the advent of Yang–Mills theories and supersymmetry in the 1970s, quantum field theory - the basis of the modern description of physical phenomena at the fundamental level - has undergone revolutionary developments. This is the first systematic and comprehensive text devoted specifically to modern field theory, bringing readers to the cutting edge of current research. The book emphasizes nonperturbative phenomena and supersymmetry. It includes a thorough discussion of various phases of gauge theories, extended objects and their quantization, and global supersymmetry from a modern perspective. Featuring extensive cross-referencing from traditional topics to recent breakthroughs in the field, it prepares students for independent research. The side boxes summarizing the main results and over 70 exercises make this an indispensable book for graduate students and researchers in theoretical physics.
This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.
Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordinary perturbation theory, VPT produces uniformly convergent series which are valid from weak to strong couplings, where they describe critical phenomena.The present book develops the theory of effective actions which allow to treat quantum phenomena with classical formalism. For example, it derives the observed anomalous power laws of strongly interacting theories from an extremum of the action. Their fluctuations are not based on Gaussian distributions, as in the perturbative treatment of quantum field theories, or in asymptotically-free theories, but on deviations from the average which are much larger and which obey power-like distributions.Exactly solvable models are discussed and their physical properties are compared with those derived from general methods. In the last chapter we discuss the problem of quantizing the classical theory of gravity.
Quantum field theory (QFT) is one of the great achievements of physics, of profound interest to mathematicians. Most pedagogical texts on QFT are geared toward budding professional physicists, however, whereas mathematical accounts are abstract and difficult to relate to the physics. This book bridges the gap. While the treatment is rigorous whenever possible, the accent is not on formality but on explaining what the physicists do and why, using precise mathematical language. In particular, it covers in detail the mysterious procedure of renormalization. Written for readers with a mathematical background but no previous knowledge of physics and largely self-contained, it presents both basic physical ideas from special relativity and quantum mechanics and advanced mathematical concepts in complete detail. It will be of interest to mathematicians wanting to learn about QFT and, with nearly 300 exercises, also to physics students seeking greater rigor than they typically find in their courses. Erratum for the book can be found at michel.talagrand.net/erratum.pdf.
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
"Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book"--