Digital signal processing (DSP) covers a wide range of applications in which the implementation of high-performance systems to meet stringent requirements and performance constraints is receiving increasing attention both in the industrial and academic contexts. Conceived to be available to a wide audience, the aim of this book is to provide students, researchers, engineers and the industrial community with a guide to the latest advances in emerging issues in the design and implementation of DSP systems for application-specific circuits and programmable devices. The book is divided into different sections including real-time audio applications, optical signal processing, image and video processing and advanced architectures and implementations. It will enable early-stage researchers and developers to deal with the important gap in knowledge in the transition from algorithm specification to the design of architectures for VLSI implementations.
About The Book: This book fuses signal processing algorithms and VLSI circuit design to assist digital signal processing architecture developers. The author then shows how this technique can be used in applications such as: signal transmission and storage, manufacturing process quality control and assurance, autonomous mobile system control and biomedical process analysis. This new publication is a revised and expanded version.
Digital Design of Signal Processing Systems discusses a spectrum of architectures and methods for effective implementation of algorithms in hardware (HW). Encompassing all facets of the subject this book includes conversion of algorithms from floating-point to fixed-point format, parallel architectures for basic computational blocks, Verilog Hardware Description Language (HDL), SystemVerilog and coding guidelines for synthesis. The book also covers system level design of Multi Processor System on Chip (MPSoC); a consideration of different design methodologies including Network on Chip (NoC) and Kahn Process Network (KPN) based connectivity among processing elements. A special emphasis is placed on implementing streaming applications like a digital communication system in HW. Several novel architectures for implementing commonly used algorithms in signal processing are also revealed. With a comprehensive coverage of topics the book provides an appropriate mix of examples to illustrate the design methodology. Key Features: A practical guide to designing efficient digital systems, covering the complete spectrum of digital design from a digital signal processing perspective Provides a full account of HW building blocks and their architectures, while also elaborating effective use of embedded computational resources such as multipliers, adders and memories in FPGAs Covers a system level architecture using NoC and KPN for streaming applications, giving examples of structuring MATLAB code and its easy mapping in HW for these applications Explains state machine based and Micro-Program architectures with comprehensive case studies for mapping complex applications The techniques and examples discussed in this book are used in the award winning products from the Center for Advanced Research in Engineering (CARE). Software Defined Radio, 10 Gigabit VoIP monitoring system and Digital Surveillance equipment has respectively won APICTA (Asia Pacific Information and Communication Alliance) awards in 2010 for their unique and effective designs.
Digital signal processing lies at the heart of the communications revolution and is an essential element of key technologies such as mobile phones and the Internet. This book covers all the major topics in digital signal processing (DSP) design and analysis, supported by MatLab examples and other modelling techniques. The authors explain clearly and concisely why and how to use digital signal processing systems; how to approximate a desired transfer function characteristic using polynomials and ratio of polynomials; why an appropriate mapping of a transfer function on to a suitable structure is important for practical applications; and how to analyse, represent and explore the trade-off between time and frequency representation of signals. An ideal textbook for students, it will also be a useful reference for engineers working on the development of signal processing systems.
This book covers the basic theoretical, algorithmic and real-time aspects of digital signal processing (DSP). Detailed information is provided on off-line, real-time and DSP programming and the reader is effortlessly guided through advanced topics such as DSP hardware design, FIR and IIR filter design and difference equation manipulation.
In DSP Architecture Design Essentials, authors Dejan Marković and Robert W. Brodersen cover a key subject for the successful realization of DSP algorithms for communications, multimedia, and healthcare applications. The book addresses the need for DSP architecture design that maps advanced DSP algorithms to hardware in the most power- and area-efficient way. The key feature of this text is a design methodology based on a high-level design model that leads to hardware implementation with minimum power and area. The methodology includes algorithm-level considerations such as automated word-length reduction and intrinsic data properties that can be leveraged to reduce hardware complexity. From a high-level data-flow graph model, an architecture exploration methodology based on linear programming is used to create an array of architectural solutions tailored to the underlying hardware technology. The book is supplemented with online material: bibliography, design examples, CAD tutorials and custom software.
In this practical guide, a refreshing approach is taken to introducing the reader to the subject of DSP. To develop a fundamental understanding, the text keeps mathematics to a minimum and uses clear, concise explanations and examples.
This text introduces digital control systems and demonstrates how to analyze and design these systems. It shows how to use DSPs to implement controllers designed with both classical frequency domain techniques and modem state variable methods. Computer-aided analysis and design tools, like MATLAB, are used throughout, and the basic mathematics of digital control systems are presented early, so users have the grounding they need to solve real-world problems. Classical design techniques for compensators are explained, as is the use of DSPs to implement compensator transfer functions. The book closes with a detailed look at modern state space techniques like pole placement state estimation; the optimal linear quadratic regulator; and a brief discussion of fuzzy logic design.