Admissibility of Weak Solutions of Multidimensional Nonlinear Systems of Conservation Laws

Admissibility of Weak Solutions of Multidimensional Nonlinear Systems of Conservation Laws

Author: Michael Sever

Publisher: Scientific Research Publishing, Inc. USA

Published: 2018-03-29

Total Pages: 127

ISBN-13: 1618964445

DOWNLOAD EBOOK

Admissible solutions of nonlinear systems of conservation laws in arbitrary dimensions are identified as points in the range of boundedly Frechet differentiable map of boundary data into weak solutions. For Cauchy problems for scalar conservation laws or hyperbolic systems in one space dimension, admissibility so determined agrees fairly closely with familiar entropy conditions. For systems in higher dimensions, however, the set of admissible weak solutions is materially smaller than might be anticipated, computational evidence to the contrary notwithstanding. Such is provably the case for Cauchy problems for hyperbolic systems, and is strongly suggested by results obtained for reduced systems determining stationary or self-similar solutions.


Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws

Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws

Author: Phoolan Prasad

Publisher: Springer

Published: 2018-03-06

Total Pages: 165

ISBN-13: 9811075816

DOWNLOAD EBOOK

This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results. The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved shock front and formation, propagation and interaction of kink lines on it.


Quasilinear Hyperbolic Systems and Dissipative Mechanisms

Quasilinear Hyperbolic Systems and Dissipative Mechanisms

Author: Ling Hsiao

Publisher: World Scientific

Published: 1997

Total Pages: 240

ISBN-13: 9789810232054

DOWNLOAD EBOOK

This book introduces the recent developments in the subject of quasilinear hyperbolic systems with dissipation, such as frictional damping, relaxation, viscosity and heat diffusion. The mathematical theory behind this subject is emphasized in two ways. One emphasis is based on understanding the influence of the dissipation mechanism on the qualitative behavior of solutions, such as the nonlinear diffusive phenomena caused by damping, and other phenomena (including phase transition) for the case with viscosity and heat diffusion. The second emphasis is to take the systems with the dissipation mechanism as an approach to approximating the corresponding system of quasilinear hyperbolic conservation laws - the zero-limit relaxation, or the zero-limit viscosity, and the related topic of nonlinear stability of waves.


Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics

Author: Constantine M. Dafermos

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 636

ISBN-13: 3540290893

DOWNLOAD EBOOK

This is a lucid and authoritative exposition of the mathematical theory of hyperbolic system laws. The second edition contains a new chapter recounting exciting recent developments on the vanishing viscosity method. Numerous new sections introduce newly derived results. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH


Analytical Approaches to Multidimensional Balance Laws

Analytical Approaches to Multidimensional Balance Laws

Author: Olga S. Rozanova

Publisher: Nova Publishers

Published: 2006

Total Pages: 260

ISBN-13: 9781594543074

DOWNLOAD EBOOK

It is difficult to overestimate the importance of mathematical investigation of balance laws. They arise in many areas of physics, mechanics, chemistry, biology, social sciences. In this collective book we concentrate in particular on the equations of continuous medium and related to them. As a rule, they are very complicated in their primitive form. An important feature of such equations is a possible formation of singularities even in initially smooth solution within a finite time. The structure of the singularities can be very complex. A natural step in the approach to this problem is the transition, despite the three-dimensionality of our world, to spatially one-dimensional model. Significant progress has been achieved in this direction. Unfortunately, the methods of the one-dimensional theory, as usual, cannot be adapted to a case of many spatial variables. However, there are many attempts to deal with multidimensional problems. We would like to present some of them. All of the papers are written by outstanding experts, representing various schools in mathematics and mechanics. Each paper is organised as follows: it contains an elementary (as far as it is possible) introduction to a problem, a brief review of previously published results, and then original results of the authors are presented.


Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Author: Simon Markfelder

Publisher: Springer Nature

Published: 2021-10-20

Total Pages: 244

ISBN-13: 3030837858

DOWNLOAD EBOOK

This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: LEVEQUE

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 221

ISBN-13: 3034851162

DOWNLOAD EBOOK

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.


Nonlinear Conservation Laws and Applications

Nonlinear Conservation Laws and Applications

Author: Alberto Bressan

Publisher: Springer Science & Business Media

Published: 2011-04-19

Total Pages: 487

ISBN-13: 1441995544

DOWNLOAD EBOOK

This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.


Multidimensional Hyperbolic Problems and Computations

Multidimensional Hyperbolic Problems and Computations

Author: James Glimm

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 399

ISBN-13: 1461391210

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications MULTIDIMENSIONAL HYPERBOLIC PROBLEMS AND COMPUTATIONS is based on the proceedings of a workshop which was an integral part ofthe 1988-89 IMA program on NONLINEAR WAVES. We are grateful to the Scientific Commit tee: James Glimm, Daniel Joseph, Barbara Keyfitz, Andrew Majda, Alan Newell, Peter Olver, David Sattinger and David Schaeffer for planning and implementing an exciting and stimulating year-long program. We especially thank the Work shop Organizers, Andrew Majda and James Glimm, for bringing together many of the major figures in a variety of research fields connected with multidimensional hyperbolic problems. A vner Friedman Willard Miller PREFACE A primary goal of the IMA workshop on Multidimensional Hyperbolic Problems and Computations from April 3-14, 1989 was to emphasize the interdisciplinary nature of contemporary research in this field involving the combination of ideas from the theory of nonlinear partial differential equations, asymptotic methods, numerical computation, and experiments. The twenty-six papers in this volume span a wide cross-section of this research including some papers on the kinetic theory of gases and vortex sheets for incompressible flow in addition to many papers on systems of hyperbolic conservation laws. This volume includes several papers on asymptotic methods such as nonlinear geometric optics, a number of articles applying numerical algorithms such as higher order Godunov methods and front tracking to physical problems along with comparison to experimental data, and also several interesting papers on the rigorous mathematical theory of shock waves.