Generalized Fractional Calculus and Applications

Generalized Fractional Calculus and Applications

Author: Virginia S Kiryakova

Publisher: CRC Press

Published: 1993-12-27

Total Pages: 412

ISBN-13: 9780582219779

DOWNLOAD EBOOK

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.


Mittag-Leffler Functions, Related Topics and Applications

Mittag-Leffler Functions, Related Topics and Applications

Author: Rudolf Gorenflo

Publisher: Springer Nature

Published: 2020-10-27

Total Pages: 548

ISBN-13: 3662615509

DOWNLOAD EBOOK

The 2nd edition of this book is essentially an extended version of the 1st and provides a very sound overview of the most important special functions of Fractional Calculus. It has been updated with material from many recent papers and includes several surveys of important results known before the publication of the 1st edition, but not covered there. As a result of researchers’ and scientists’ increasing interest in pure as well as applied mathematics in non-conventional models, particularly those using fractional calculus, Mittag-Leffler functions have caught the interest of the scientific community. Focusing on the theory of Mittag-Leffler functions, this volume offers a self-contained, comprehensive treatment, ranging from rather elementary matters to the latest research results. In addition to the theory the authors devote some sections of the work to applications, treating various situations and processes in viscoelasticity, physics, hydrodynamics, diffusion and wave phenomena, as well as stochastics. In particular, the Mittag-Leffler functions make it possible to describe phenomena in processes that progress or decay too slowly to be represented by classical functions like the exponential function and related special functions. The book is intended for a broad audience, comprising graduate students, university instructors and scientists in the field of pure and applied mathematics, as well as researchers in applied sciences like mathematical physics, theoretical chemistry, bio-mathematics, control theory and several other related areas.


H-Transforms

H-Transforms

Author: Anatoly A. Kilbas

Publisher: CRC Press

Published: 2004-03-17

Total Pages: 399

ISBN-13: 0203487370

DOWNLOAD EBOOK

Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.


Handbook of Function and Generalized Function Transformations

Handbook of Function and Generalized Function Transformations

Author: Ahmed I. Zayed

Publisher: CRC Press

Published: 2019-08-21

Total Pages: 672

ISBN-13: 0429610912

DOWNLOAD EBOOK

Function transformations, which include linear integral transformations, are some of the most important mathematical tools for solving problems in all areas of engineering and the physical sciences. They allow one to quickly solve a problem by breaking it down into a series of smaller, more manageable problems. The author has compiled the most important and widely used of these function transforms in applied mathematics and electrical engineering. In addition to classical transforms, newer transforms such as wavelets, Zak, and Radon are included. The book is neither a table of transforms nor a textbook, but it is a source book that provides quick and easy access to the most important properties and formulas of function and generalized function transformations. It is organized for convenient reference, with chapters broken down into the following sections: