This collaborative work presents the results of over twenty years of pioneering research by Professor Simon Haykin and his colleagues, dealing with the use of adaptive radar signal processing to account for the nonstationary nature of the environment. These results have profound implications for defense-related signal processing and remote sensing. References are provided in each chapter guiding the reader to the original research on which this book is based.
Walks the reader through adaptive approaches to radar signal processing by detailing the basic concepts of various techniques and then developing equations to analyze their performance. Finally, it presents curves that illustrate the attained performance.
Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: - RRM's role in optimizing the performance of modern phased array radars - The advantages of adaptivity in implementing RRM - The role that modelling and simulation plays in evaluating RRM performance - Description of the simulation tool Adapt_MFR - Detailed descriptions and performance results for specific adaptive RRM techniques - The only book fully dedicated to adaptive RRM - A comprehensive treatment of phased array radars and RRM, including task prioritization, radar scheduling, and adaptive track update rates - Provides detailed knowledge of specific RRM techniques and their performance
Based on the author's extensive research at MIT Lincoln Laboratory, this authoritative resource offers an in-depth description of adaptive array design, emphasizing the RF characteristics, mutual coupling among elements, and field testing methods. It provides you with proven techniques for challenging projects involving radar, communication systems and antenna design. For the first time in any book, you find design guidance on specialized types of arrays, using monopole radiating elements, slotted cylinders and ultrawideband dipoles. Moreover, this unique book presents a focused near-field technique that quantifies the far-field performance of large aperture radar systems and communication systems. The book presents example prototype phased array antennas, including discussions on monopole phased arrays, finite and infinite array analyses, measurements for planar arrays of monopole elements. Further, you get a detailed explanation of focused near-field polarization characteristics of monopole arrays as related to adaptive array testing in the near field. From the fundamentals of adaptive antennas and degrees of freedom for multiple beam antennas and phased arrays… to a test bed monopole phased array and the planar near field testing technique… to arrays of horizontally polarized loop-fed slotted cylinder antennas and ultrawideband dipole arrays, this comprehensive book offers you invaluable, hands-on knowledge for your work in the field.
This authoritative, leading-edge resource gives you a comprehensive overview of sample rate conversion (SRC) and its applications in software configurable radios. The book helps you understand the limits of feasible systems for sample rate conversion, as well as the limits of interpolation. You get sound advice on selecting the appropriate types of SRC for specific applications, and assistance in handling the trade-off between hardware complexity and the clock rate of a system. From an introduction to software radio and a refresher on the fundamentals of sampling and sample rate conversion, to discussions on block signal processing and well-known and novel structures for sample rate conversion, the book offers you practical guidance that enables you to quickly find solutions for your challenging projects in the field. This first-of-its-kind reference concludes with a list of questions that - when answered - helps to design a system for sample rate conversion. Over 890 equations and 90 illustrations support key topics throughout the book.
This highly-anticipated second edition of the bestselling Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach, the first book on the subject, provides up-to-the-minute advances in the field of cognitive radar (CR). Adaptive waveform methods are discussed in detail, along with optimum resource allocation and radar scheduling. Chronicling the field of cognitive radar (CR), this cutting-edge resource provides an accessible introduction to the theory and applications of CR, and presents a comprehensive overview of the latest developments in this emerging area. It covers important breakthroughs in advanced radar systems, and offers new and powerful methods for combating difficult clutter environments. You find details on specific algorithmic and real-time high-performance embedded computing (HPEC) architectures. This practical book is supported with numerous examples that clarify key topics, and includes more than 370 equations.
A valuable resource for radar engineers and managers of all levels, this revised edition provides an introduction to the capabilities and limitations of radar, as well as a detailed advanced study of key radar signal processing topics. The book explains the concepts and theory of radar signal processing such as resolution, ambiguities, antennas, waveforms, the theory of detecting targets in noise and/or clutter, and tracking using data processing. It also presents equations for the determination of maximum radar range in free space and as affected by multipath and the horizon.
Chronicling the new field of cognitive radar (CR), this cutting-edge resource provides an accessible introduction to the theory and applications of CR, and presents a comprehensive overview of the latest developments in this emerging area. The first book on the subject, Cognitive Radar covers important breakthroughs in advanced radar systems, and offers new and powerful methods for combating difficult clutter environments. You find details on specific algorithmic and real-time high-performance embedded computing (HPEC) architectures. This practical book is supported with numerous examples that clarify key topics, and includes more than 370 equations.
The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar OCo mere ranging and detection OCo to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target''s response can be a function of frequency components in the transmitted signal''s envelope as well as the signal''s carrier.
Adaptive processing in a radar environment is necessary due to its inherently nonstable nature. A detailed mathematical treatment of the important issues in adaptive radar detection and estimation is offered. Since much of the material presented has not appeared in book form, you'll find this work fills an important gap in the known literature. Following an overview of the subject, contributors develop model-based techniques for the detection of radar targets in the presence of clutter; discuss minimum variance beamforming techniques; consider maximum likelihood bearing estimation in beamspace for an adaptive phased array radar; present an algorithm for angle-of-arrival estimation; and describe the method of multiple windows for spectrum estimation.