Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics

Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics

Author: Costas D. Sarris

Publisher: Morgan & Claypool Publishers

Published: 2007

Total Pages: 154

ISBN-13: 1598290789

DOWNLOAD EBOOK

Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities); Optical power splitters, Y-junctions, and couplers; Optical ring resonators; Nonlinear optical waveguides.


Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Author: Costas Sarris

Publisher: Springer

Published: 2007-12-31

Total Pages: 135

ISBN-13: 9783031005671

DOWNLOAD EBOOK

This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies are aimed at optimally tailoring the computational resources needed for the wideband simulation of microwave and optical structures to their geometry, as well as the nature of the field solutions they support. That is achieved by the development of robust “adaptive meshing” approaches, which amount to varying the total number of unknown field quantities in the course of the simulation to adapt to temporally or spatially localized field features. While mesh adaptation is an extremely desirable FDTD feature, known to reduce simulation times by orders of magnitude, it is not always robust. The specific techniques presented in this book are characterized by stability and robustness. Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities). Optical power splitters, Y-junctions, and couplers Optical ring resonators Nonlinear optical waveguides. Building on first principles of time-domain electromagnetic simulations, this book presents advanced concepts and cutting-edge modeling techniques in an intuitive way for programmers, engineers, and graduate students. It is designed to provide a solid reference for highly efficient time-domain solvers, employed in a wide range of exciting applications in microwave/millimeter-wave and optical engineering.


Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Author: Costas Sarris

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 135

ISBN-13: 3031016955

DOWNLOAD EBOOK

This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies are aimed at optimally tailoring the computational resources needed for the wideband simulation of microwave and optical structures to their geometry, as well as the nature of the field solutions they support. That is achieved by the development of robust “adaptive meshing” approaches, which amount to varying the total number of unknown field quantities in the course of the simulation to adapt to temporally or spatially localized field features. While mesh adaptation is an extremely desirable FDTD feature, known to reduce simulation times by orders of magnitude, it is not always robust. The specific techniques presented in this book are characterized by stability and robustness. Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities). Optical power splitters, Y-junctions, and couplers Optical ring resonators Nonlinear optical waveguides. Building on first principles of time-domain electromagnetic simulations, this book presents advanced concepts and cutting-edge modeling techniques in an intuitive way for programmers, engineers, and graduate students. It is designed to provide a solid reference for highly efficient time-domain solvers, employed in a wide range of exciting applications in microwave/millimeter-wave and optical engineering.


Numerical Electromagnetics

Numerical Electromagnetics

Author: Umran S. Inan

Publisher: Cambridge University Press

Published: 2011-04-07

Total Pages: 405

ISBN-13: 1139497987

DOWNLOAD EBOOK

Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.


Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Author: Stephen Gedney

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 242

ISBN-13: 3031017129

DOWNLOAD EBOOK

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing


Scattering Analysis of Periodic Structures using Finite-Difference Time-Domain Method

Scattering Analysis of Periodic Structures using Finite-Difference Time-Domain Method

Author: Khaled ElMahgoub

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 122

ISBN-13: 3031017137

DOWNLOAD EBOOK

Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions


Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method

Analysis and Design of Substrate Integrated Waveguide Using Efficient 2D Hybrid Method

Author: Xuan Hui Wu

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 82

ISBN-13: 3031017110

DOWNLOAD EBOOK

Substrate integrated waveguide (SIW) is a new type of transmission line. It implements a waveguide on a piece of printed circuit board by emulating the side walls of the waveguide using two rows of metal posts. It inherits the merits both from the microstrip for compact size and easy integration, and from the waveguide for low radiation loss, and thus opens another door to design efficient microwave circuits and antennas at a low cost. This book presents a two-dimensional fullwave analysis method to investigate an SIW circuit composed of metal and dielectric posts. It combines the cylindrical eigenfunction expansion and the method of moments to avoid geometrical descritization of the posts. The method is presented step-by-step, with all the necessary formulations provided for a practitioner who wants to implement this method by himself. This book covers the SIW circuit printed on either homogeneous or inhomogeneous substrate, the microstrip-to-SIW transition and the speed-up technique for the simulation of symmetrical SIW circuits. Different types of SIW circuits are shown and simulated using the proposed method. In addition, several slot antennas and horn antennas fabricated using the SIW technology are also given. Table of Contents: Introduction / SIW Circuits Composed of Metallic Posts / SIW Circuits with Dielectric Posts / Even-Odd Mode Analysis of a Symmetrical Circuit / Microstrip to SIW Transition and Half Mode SIW / SIW Antennas


Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Selected Asymptotic Methods with Applications to Electromagnetics and Antennas

Author: George Fikioris

Publisher: Morgan & Claypool Publishers

Published: 2013-09-01

Total Pages: 209

ISBN-13: 162705040X

DOWNLOAD EBOOK

This book describes and illustrates the application of several asymptotic methods that have proved useful in the authors' research in electromagnetics and antennas. We first define asymptotic approximations and expansions and explain these concepts in detail. We then develop certain prerequisites from complex analysis such as power series, multivalued functions (including the concepts of branch points and branch cuts), and the all-important gamma function. Of particular importance is the idea of analytic continuation (of functions of a single complex variable); our discussions here include some recent, direct applications to antennas and computational electromagnetics. Then, specific methods are discussed. These include integration by parts and the Riemann-Lebesgue lemma, the use of contour integration in conjunction with other methods, techniques related to Laplace's method and Watson's lemma, the asymptotic behavior of certain Fourier sine and cosine transforms, and the Poisson summation formula (including its version for finite sums). Often underutilized in the literature are asymptotic techniques based on the Mellin transform; our treatment of this subject complements the techniques presented in our recent Synthesis Lecture on the exact (not asymptotic) evaluation of integrals.