Adaptation Measures for Urban Heat Islands helps the reader understand the relative performance of these adaptation measures, methods and analysis relating to their creation and maintenance, evaluation methods, and the role of policy and governance in implementing them. A suite of case studies is included on these urban or metropolitan areas that are significantly warmer than their surrounding rural areas due to human activities. In recent years, a suite of adaptation measures have been developed to mitigate the urban heat island phenomena. - Provides a range of concrete implementation methods - Assesses relative performance of adaptation measures and countermeasure technologies - Establishes methods for human thermal environmental interventions - Reviews adaptation cities selected for excellent energy performance and thermal comfort indicators
This book discusses the concepts and technologies associated with the mitigation of urban heat islands (UHIs) that are applicable in hot and humid regions. It presents several city case studies on how UHIs can be reduced in various areas to provide readers, researchers, and policymakers with insights into the concepts and technologies that should be considered when planning and constructing urban centres and buildings. The rapid development of urban areas in hot and humid regions has led to an increase in urban temperatures, a decrease in ventilation in buildings, and a transformation of the once green outdoor environment into areas full of solar-energy-absorbing concrete and asphalt. This situation has increased the discomfort of people living in these areas regardless of whether they occupy concrete structures. This is because indoor and outdoor air quality have both suffered from urbanisation. The development of urban areas has also increased energy consumption so that the occupants of buildings can enjoy indoor thermal comfort and air quality that they need via air conditioning systems. This book offers solutions to the recent increase in the number of heat islands in hot and humid regions.
This book provides the reader with an understanding of the impact that different morphologies, construction materials and green coverage solutions have on the urban microclimate, thus affecting the comfort conditions of urban inhabitants and the energy needs of buildings in urban areas. The book covers the latest approaches to energy and outdoor comfort measurement and modelling on an urban scale, and describes possible measures and strategies to mitigate the effects of the mutual interaction between urban settlements and local microclimate. Despite its relevance, only limited literature is currently devoted to appraising—from an engineering perspective—the intertwining relationships between urban geometry and fabrics, energy fluxes between buildings and their surroundings, outdoor microclimate conditions and building energy demands in urban areas. This book fills this gap by first discussing the physical processes that govern heat and mass transfer at an urban scale, while emphasizing the role played by different spatial arrangements, manmade materials and green infrastructures on the outdoor microclimate. The first chapters also address the implications of these factors on the outdoor comfort conditions experienced by pedestrians, and on the buildings’ energy demand for space heating and cooling. Then, based upon cutting-edge experimental activities and simulation work, this book demonstrates current and forthcoming adaptation and mitigation strategies to improve the urban microclimate and its impact on the built environment, such as cool materials, thermochromic and retroreflective finishing materials, and green infrastructures applied either at a building scale or at the urban scale. The effect of these solutions is demonstrated for different cities worldwide under a range of climate conditions. Finally, the book opens a wider perspective by introducing the basic elements that allow fuel poverty, raw materials consumption, and the principles of circular economy in the definition of a resilient urban settlement.
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
Heat islands are urban and suburban areas that are significantly warmer than their surroundings. Traditional, highly absorptive construction materials and a lack of effective landscaping are their main causes. Heat island problems, in terms of increased energy consumption, reduced air quality and effects on human health and mortality, are becoming more pressing as cities continue to grow and sprawl. This comprehensive book brings together the latest information about heat islands and their mitigation. The book describes how heat islands are formed, what problems they cause, which technologies mitigate heat island effects and what policies and actions can be taken to cool communities. Internationally renowned expert Lisa Gartland offers a comprehensive source of information for turning heat islands into cool communities. The author includes sections on cool roofing and cool paving, explains their benefits in detail and provides practical guidelines for their selection and installation. The book also reviews how and why to incorporate trees and vegetation around buildings, in parking lots and on green roofs.
Climate Adaptation Engineering defines the measures taken to reduce vulnerability and increase the resiliency of built infrastructure. This includes enhancement of design standards, structural strengthening, utilisation of new materials, and changes to inspection and maintenance regimes, etc. The book examines the known effects and relationships of climate change variables on infrastructure and risk-management policies. Rich with case studies, this resource will enable engineers to develop a long-term, self-sustained assessment capacity and more effective risk-management strategies. The book's authors also take a long-term view, dealing with several aspects of climate change. The text has been written in a style accessible to technical and non-technical readers with a focus on practical decision outcomes. - Provides climate scenarios and their likelihoods, hazard modelling (wind, flood, heatwaves, etc.), infrastructure vulnerability, resilience or exposure (likelihood and extent of damage) - Introduces the key concepts needed to assess the risks, costs and benefits of future proofing infrastructures in a changing climate - Includes case studies authored by experts from around the world
The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.
Urban areas are home to over half the world's people and are at the forefront of the climate change issue. The need for a global research effort to establish the current understanding of climate change adaptation and mitigation at the city level is urgent. To meet this goal a coalition of international researchers - the Urban Climate Change Research Network (UCCRN) - was formed at the time of the C40 Large Cities Climate Summit in New York in 2007. This book is the First UCCRN Assessment Report on Climate Change and Cities. The authors are all international experts from a diverse range of cities with varying socio-economic conditions, from both the developing and developed world. It is invaluable for mayors, city officials and policymakers; urban sustainability officers and urban planners; and researchers, professors and advanced students.