This book is a well-edited and comprehensive survey of the current research in the field of low-mass accretion powered compact binaries, that is, binary stars containing a white dwarf, neutron star, or black hole as the primary star and a Roche-lobe filling low-mass as the secondary star. These stars have reached a stage in their evolution where the transfer of mass from the giant phase onto a dwarf or sub-dwarf star demonstrates many different aspects of physics. The volume is essentially a complete analysis of these stars combining theory and observation, and covering observations of low-mass X-ray binaries and both magnetic and nonmagnetic cataclysmic variables, theories of stellar accretion, novae, and evolution of compact binaries.
Accretion disks in compact stellar systems containing white dwarfs, neutron stars or black holes are the principal laboratory for understanding the role of accretion disks in a wide variety of environments from proto-stars to quasars. Recent work on disk instabilities and dynamics has given a new theoretical framework with which to study accretion disks. Modeling of time-dependent phenomena provides new insight into the causes and interpretation of photometric and spectroscopic variability and new constraints on the fundamental physical problem — the origin of viscosity in accretion disks. This book contains expert reviews on the nature of limit cycle thermal instabilities and a variety of closely related topics from the theory of angular momentum transport to eclipse mapping of the disk structure. The result is a comprehensive contemporary survey of the structure and evolution of accretion disks in compact binary systems.
Accretion Power in Astrophysics examines accretion as a source of energy in both binary star systems containing compact objects, and in active galactic nuclei. Assuming a basic knowledge of physics, the authors describe the physical processes at work in accretion discs and other accretion flows. The first three chapters explain why accretion is a source of energy, and then present the gas dynamics and plasma concepts necessary for astrophysical applications. The next three chapters then develop accretion in stellar systems, including accretion onto compact objects. Further chapters give extensive treatment of accretion in active galactic nuclei, and describe thick accretion discs. A new chapter discusses recently discovered accretion flow solutions. The third edition is greatly expanded and thoroughly updated. New material includes a detailed treatment of disc instabilities, irradiated discs, disc warping, and general accretion flows. The treatment is suitable for advanced undergraduates, graduate students and researchers.
This book is an introduction to pulsars, a key area in high energy astrophysics with continuing potential for fundamental discoveries. Throughout the book runs the unifying thread of the evolutionary link between rotation-powered pulsars and accretion-powered pulsars OCo a milestone of modern astrophysics. Early textbooks on pulsars dealt almost entirely with rotation-powered ones, while accounts of pulsars in volumes on X-ray binaries focused almost exclusively on accretion-powered ones. This is the first textbook to treat these two kinds of pulsars simultaneously with equal importance, stressing the fact that both are rotating, magnetic neutron stars, operating under different conditions during different parts of their lives. It describes the observational properties of both kinds of pulsars, summarizes our physical understanding of these properties, and pays detailed attention to the physics of superdense matter which neutron stars are composed of, as well as to the superfluidity which is expected to occur in neutron stars. Evolution from rotation-power to accretion-power, and vice versa, are carefully described. The effects of the strong magnetic fields of neutron stars on themselves, their emission properties, and their environments are discussed, as are the origin and evolution of such magnetic fields. Also treated is the superbly accurate verification of Einstein''s theory of general relativity through timing studies of binary pulsars, which led to the award of the Nobel Prize to Hulse and Taylor in 1993. On each topic, the book starts with simple, basic physical concepts, and builds up the exposition to the point where the latest and most exciting developments become accessible to the reader."
The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.
Observational and Theoretical Issues of Interacting Binaries was the topic of the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. It was the first time that binary systems were the center of attention of our course. The established concept and organisation of the Advanced Course has been retained: three scientists, all acknowledged experts in their respective fields, were each invited to give nine one-hour lectures within the period of a week. The Advanced Course took place from April 6 to 11, 1992, at Les Diablerets, a charming resort in the Swiss alps. The high level of the lectures, the international background of the 65 participants, including many young students, and the beauty of the surroundings all contributed to the success of the course. The lecture notes of this course, the 22nd in our series, are also the third to be published by Springer-Verlag. Well over half of all stars seem to exist in binary systems. The study of binary evolution is therefore essential for our understanding of stellar evolution in general. The evolution of interacting binaries contains in itself many of the problems met in other fields of modern astrophysics. This is very apparent in these lecture notes.
This timely volume provides the first comprehensive survey of cataclysmic variable stars, integrating theory and observation into a single, synthesised text.
Proceedings of the NATO Advanced Research Workshop on X-Ray Binaries and the Formation of Binary and Millisecond Radio Pulsars, Santa Barbara, CA, U.S.A., Januari 21-25, 1991
A companion to earlier volumes (497, 536, 596, 617 and 631) of the Annals, this entry in the nonlinear astronomy series has contributions by most of the acknowledged experts in the field. They write on many topics, all of current interest. As several hold strong opposing views, this is a lively, important and timely publication.
ROSAT Observations G. HASINGER Max-Planck-Institut flir extraterrestrische Physik, D-85740 Garching, Germany Abstract. This review describes the most recent advances in the study of the extragalactic soft X-ray background and what we can learn about its constituents. The deepest pointed observations with the ROSAT PSPC are discussed. The logN-logS relation is presented, which reaches to the faintest X-ray fluxes and to the highest AGN surface densities ever achieved. The N(>S) relation shows a 2 density in excess of 400 deg- at the faintest fluxes and a flattening below the Einstein Deep Survey limit. About 60% of the extragalactic background has been resolved in the deepest field. Detailed source spectra and first optical and radio identifications will be discussed. The results are put into perspective of the higher energy X -ray background. Key words: X-rays, background radiations, active galactic nuclei. 1. Introduction The extragalactic X-ray background (XRB), discovered about 30 years ago, has been studied extensively with many X-ray experiments, in particular with the satel lites HEAO I and II (see ego Boldt 1987) and with ROSAT (e. g. Hasinger et aI. , 1993). Figure 1 shows a compilation of some of the most recent spectral measure ments for the X-ray background. Over the energy range from 3 to about 100 keY its spectrum can be well approximated by an optically thin thermal bremsstrahlung model with kT ~ 40 keY, while at lower X-ray energies a steepening into a new component has been observed observed (e. g.