Acceleration of Biomedical Image Processing with Dataflow on FPGAs

Acceleration of Biomedical Image Processing with Dataflow on FPGAs

Author: Frederik Grüll

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 229

ISBN-13: 1000795632

DOWNLOAD EBOOK

Short compute times are crucial for timely diagnostics in biomedical applications, but lead to a high demand in computing for new and improved imaging techniques. In this book reconfigurable computing with FPGAs is discussed as an alternative to multi-core processing and graphics card accelerators. Instead of adjusting the application to the hardware, FPGAs allow the hardware to also be adjusted to the problem. Acceleration of Biomedical Image Processing with Dataflow on FPGAs covers the transformation of image processing algorithms towards a system of deep pipelines that can be executed with very high parallelism. The transformation process is discussed from initial design decisions to working implementations. Two example applications from stochastic localization microscopy and electron tomography illustrate the approach further. Topics discussed in the book include:• Reconfigurable hardware• Dataflow computing• Image processing• Application acceleration


Biomedical Diagnostics and Clinical Technologies: Applying High-Performance Cluster and Grid Computing

Biomedical Diagnostics and Clinical Technologies: Applying High-Performance Cluster and Grid Computing

Author: Pereira, Manuela

Publisher: IGI Global

Published: 2010-09-30

Total Pages: 396

ISBN-13: 160566281X

DOWNLOAD EBOOK

Biomedical Diagnostics and Clinical Technologies: Applying High-Performance Cluster and Grid Computing disseminates knowledge regarding high performance computing for medical applications and bioinformatics. This critical reference source contains a valuable collection of cutting-edge research chapters for those working in the broad field of medical informatics and bioinformatics.


Signal Processing, Image Processing and Pattern Recognition

Signal Processing, Image Processing and Pattern Recognition

Author: Tai-hoon Kim

Publisher: Springer

Published: 2011-12-02

Total Pages: 460

ISBN-13: 3642271839

DOWNLOAD EBOOK

This book comprises selected papers of the International Conference on Signal Processing, Image Processing and Pattern Recognition, SIP 2011, held as Part of the Future Generation Information Technology Conference, FGIT 2011, in Conjunction with GDC 2011, in Conjunction with GDC 2011, Jeju Island, Korea, in December 2011. The papers presented were carefully reviewed and selected from numerous submissions and focus on the various aspects of signal processing, image processing and pattern recognition.


Exploring the DataFlow Supercomputing Paradigm

Exploring the DataFlow Supercomputing Paradigm

Author: Veljko Milutinovic

Publisher: Springer

Published: 2019-05-27

Total Pages: 318

ISBN-13: 3030138038

DOWNLOAD EBOOK

This useful text/reference describes the implementation of a varied selection of algorithms in the DataFlow paradigm, highlighting the exciting potential of DataFlow computing for applications in such areas as image understanding, biomedicine, physics simulation, and business. The mapping of additional algorithms onto the DataFlow architecture is also covered in the following Springer titles from the same team: DataFlow Supercomputing Essentials: Research, Development and Education, DataFlow Supercomputing Essentials: Algorithms, Applications and Implementations, and Guide to DataFlow Supercomputing. Topics and Features: introduces a novel method of graph partitioning for large graphs involving the construction of a skeleton graph; describes a cloud-supported web-based integrated development environment that can develop and run programs without DataFlow hardware owned by the user; showcases a new approach for the calculation of the extrema of functions in one dimension, by implementing the Golden Section Search algorithm; reviews algorithms for a DataFlow architecture that uses matrices and vectors as the underlying data structure; presents an algorithm for spherical code design, based on the variable repulsion force method; discusses the implementation of a face recognition application, using the DataFlow paradigm; proposes a method for region of interest-based image segmentation of mammogram images on high-performance reconfigurable DataFlow computers; surveys a diverse range of DataFlow applications in physics simulations, and investigates a DataFlow implementation of a Bitcoin mining algorithm. This unique volume will prove a valuable reference for researchers and programmers of DataFlow computing, and supercomputing in general. Graduate and advanced undergraduate students will also find that the book serves as an ideal supplementary text for courses on Data Mining, Microprocessor Systems, and VLSI Systems.


Electromagnetic Imaging for a Novel Generation of Medical Devices

Electromagnetic Imaging for a Novel Generation of Medical Devices

Author: Francesca Vipiana

Publisher: Springer Nature

Published: 2023-06-29

Total Pages: 368

ISBN-13: 3031286669

DOWNLOAD EBOOK

This book offers the first comprehensive coverage of microwave medical imaging, with a special focus on the development of novel devices and methods for different applications in both the diagnosis and treatment of various diseases. Upon introducing the fundamentals of electromagnetic imaging, it guides the readers to their use in practice by providing extensive information on the corresponding measurement and testing techniques. In turn, it discusses current challenges in data processing and analysis, presenting effective, novel solutions, developed by different research groups. It also describes state-of-the-art medical devices, which were designed for specific applications, such as brain stroke monitoring, lymph node diagnosis, image-guided hyperthermia, and chemotherapy response monitoring. The chapters, which report on the results of the EU-funded project EMERALD (ElectroMagnetic imaging for a novel genERation of medicAL Devices) are written by leading European engineering groups in electromagnetic medical imaging, whose coordinated action is expected to accelerate the translation of this technology “from research bench to patient bedside”. All in all, this book offers an authoritative guide to microwave imaging, with a special focus on medical imaging, for electrical and biomedical engineers, and applied physicists and mathematicians. It is also intended to inform medical doctors and imaging technicians on the state-of-the-art in non-invasive imaging technologies, at the purpose of inspiring and fostering the translation of research into clinical prototypes, by promoting a stronger collaboration between academic institutions, industrial partners, hospitals, and university medical centers.


Medical Imaging

Medical Imaging

Author: Troy Farncombe

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 740

ISBN-13: 1466582634

DOWNLOAD EBOOK

The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.


Architecture of Computing Systems – ARCS 2015

Architecture of Computing Systems – ARCS 2015

Author: Luís Miguel Pinho Pinho

Publisher: Springer

Published: 2015-03-10

Total Pages: 255

ISBN-13: 3319160869

DOWNLOAD EBOOK

This book constitutes the proceedings of the 28th International Conference on Architecture of Computing Systems, ARCS 2015, held in Porto, Portugal, in March 2015. The 19 papers presented together with three invited papers were carefully reviewed and selected from 45 submissions. The papers are organized in six sessions covering the topics: hardware, design, applications, trust and privacy, real-time issues and a best papers session.


Evaluation of State-of-the-Art Hardware Architectures for Fast Cone-Beam CT Reconstruction

Evaluation of State-of-the-Art Hardware Architectures for Fast Cone-Beam CT Reconstruction

Author: Holger Scherl

Publisher: Springer Science & Business Media

Published: 2011-07-29

Total Pages: 145

ISBN-13: 3834882593

DOWNLOAD EBOOK

Holger Scherl introduces the reader to the reconstruction problem in computed tomography and its major scientific challenges that range from computational efficiency to the fulfillment of Tuy's sufficiency condition. The assessed hardware architectures include multi- and many-core systems, cell broadband engine architecture, graphics processing units, and field programmable gate arrays.


Graphics Processing Unit-Based High Performance Computing in Radiation Therapy

Graphics Processing Unit-Based High Performance Computing in Radiation Therapy

Author: Xun Jia

Publisher: CRC Press

Published: 2018-09-21

Total Pages: 396

ISBN-13: 1482244799

DOWNLOAD EBOOK

Use the GPU Successfully in Your Radiotherapy Practice With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy. Tackle Problems in Medical Imaging and Radiotherapy The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy. Translate Research Developments to Clinical Practice Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.


Hands-On GPU Computing with Python

Hands-On GPU Computing with Python

Author: Avimanyu Bandyopadhyay

Publisher: Packt Publishing Ltd

Published: 2019-05-14

Total Pages: 441

ISBN-13: 1789342406

DOWNLOAD EBOOK

Explore GPU-enabled programmable environment for machine learning, scientific applications, and gaming using PuCUDA, PyOpenGL, and Anaconda Accelerate Key FeaturesUnderstand effective synchronization strategies for faster processing using GPUsWrite parallel processing scripts with PyCuda and PyOpenCLLearn to use the CUDA libraries like CuDNN for deep learning on GPUsBook Description GPUs are proving to be excellent general purpose-parallel computing solutions for high performance tasks such as deep learning and scientific computing. This book will be your guide to getting started with GPU computing. It will start with introducing GPU computing and explain the architecture and programming models for GPUs. You will learn, by example, how to perform GPU programming with Python, and you’ll look at using integrations such as PyCUDA, PyOpenCL, CuPy and Numba with Anaconda for various tasks such as machine learning and data mining. Going further, you will get to grips with GPU work flows, management, and deployment using modern containerization solutions. Toward the end of the book, you will get familiar with the principles of distributed computing for training machine learning models and enhancing efficiency and performance. By the end of this book, you will be able to set up a GPU ecosystem for running complex applications and data models that demand great processing capabilities, and be able to efficiently manage memory to compute your application effectively and quickly. What you will learnUtilize Python libraries and frameworks for GPU accelerationSet up a GPU-enabled programmable machine learning environment on your system with AnacondaDeploy your machine learning system on cloud containers with illustrated examplesExplore PyCUDA and PyOpenCL and compare them with platforms such as CUDA, OpenCL and ROCm.Perform data mining tasks with machine learning models on GPUsExtend your knowledge of GPU computing in scientific applicationsWho this book is for Data Scientist, Machine Learning enthusiasts and professionals who wants to get started with GPU computation and perform the complex tasks with low-latency. Intermediate knowledge of Python programming is assumed.