Abstract Analytic Number Theory

Abstract Analytic Number Theory

Author: John Knopfmacher

Publisher: Newnes

Published: 1975

Total Pages: 334

ISBN-13: 0720424623

DOWNLOAD EBOOK

The purpose of this book is to provide a detailed introduction to arithmetical semigroups and algebraic enumeration problems, arithmetical semigroups with analytical properties of classical type, and analytical properties of other arithmetical systems. These systems are considered in detail, yet should be accessible to readers with only a moderate mathematical background--three years of university mathematics should be sufficient.


Analytic Number Theory

Analytic Number Theory

Author: P. T. Bateman

Publisher: World Scientific

Published: 2004

Total Pages: 378

ISBN-13: 9789812560803

DOWNLOAD EBOOK

This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/


Abstract analytic number theory

Abstract analytic number theory

Author: Knopfmacher

Publisher: Newnes

Published: 2009-02-04

Total Pages: 333

ISBN-13: 0444107797

DOWNLOAD EBOOK

North-Holland Mathematical Library, Volume 12: Abstract Analytic Number Theory focuses on the approaches, methodologies, and principles of the abstract analytic number theory. The publication first deals with arithmetical semigroups, arithmetical functions, and enumeration problems. Discussions focus on special functions and additive arithmetical semigroups, enumeration and zeta functions in special cases, infinite sums and products, double series and products, integral domains and arithmetical semigroups, and categories satisfying theorems of the Krull-Schmidt type. The text then ponders on semigroups satisfying Axiom A, asymptotic enumeration and "statistical" properties of arithmetical functions, and abstract prime number theorem. Topics include asymptotic properties of prime-divisor functions, maximum and minimum orders of magnitude of certain functions, asymptotic enumeration in certain categories, distribution functions of prime-independent functions, and approximate average values of special arithmetical functions. The manuscript takes a look at arithmetical formations, additive arithmetical semigroups, and Fourier analysis of arithmetical functions, including Fourier theory of almost even functions, additive abstract prime number theorem, asymptotic average values and densities, and average values of arithmetical functions over a class. The book is a vital reference for researchers interested in the abstract analytic number theory.


Analytic Number Theory For Undergraduates

Analytic Number Theory For Undergraduates

Author: Heng Huat Chan

Publisher: World Scientific Publishing Company

Published: 2009-04-21

Total Pages: 125

ISBN-13: 9814365270

DOWNLOAD EBOOK

This book is written for undergraduates who wish to learn some basic results in analytic number theory. It covers topics such as Bertrand's Postulate, the Prime Number Theorem and Dirichlet's Theorem of primes in arithmetic progression.The materials in this book are based on A Hildebrand's 1991 lectures delivered at the University of Illinois at Urbana-Champaign and the author's course conducted at the National University of Singapore from 2001 to 2008.


Algebraic Number Theory

Algebraic Number Theory

Author: Frazer Jarvis

Publisher: Springer

Published: 2014-06-23

Total Pages: 298

ISBN-13: 3319075454

DOWNLOAD EBOOK

This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.


Problems in Algebraic Number Theory

Problems in Algebraic Number Theory

Author: M. Ram Murty

Publisher: Springer Science & Business Media

Published: 2005-09-28

Total Pages: 354

ISBN-13: 0387269983

DOWNLOAD EBOOK

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved


A Classical Introduction to Modern Number Theory

A Classical Introduction to Modern Number Theory

Author: K. Ireland

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 355

ISBN-13: 1475717792

DOWNLOAD EBOOK

This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.


Algebraic Number Theory and Fermat's Last Theorem

Algebraic Number Theory and Fermat's Last Theorem

Author: Ian Stewart

Publisher: CRC Press

Published: 2001-12-12

Total Pages: 334

ISBN-13: 143986408X

DOWNLOAD EBOOK

First published in 1979 and written by two distinguished mathematicians with a special gift for exposition, this book is now available in a completely revised third edition. It reflects the exciting developments in number theory during the past two decades that culminated in the proof of Fermat's Last Theorem. Intended as a upper level textbook, it


A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory

Author: Henri Cohen

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 556

ISBN-13: 3662029456

DOWNLOAD EBOOK

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.


A Primer of Analytic Number Theory

A Primer of Analytic Number Theory

Author: Jeffrey Stopple

Publisher: Cambridge University Press

Published: 2003-06-23

Total Pages: 404

ISBN-13: 9780521012539

DOWNLOAD EBOOK

An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.