Abstract Algebra and Solution by Radicals

Abstract Algebra and Solution by Radicals

Author: John Edward Maxfield

Publisher: Courier Corporation

Published: 2010-03-01

Total Pages: 228

ISBN-13: 0486477231

DOWNLOAD EBOOK

The American Mathematical Monthly recommended this advanced undergraduate-level text for teacher education. It starts with groups, rings, fields, and polynomials and advances to Galois theory, radicals and roots of unity, and solution by radicals. Numerous examples, illustrations, commentaries, and exercises enhance the text, along with 13 appendices. 1971 edition.


A Book of Abstract Algebra

A Book of Abstract Algebra

Author: Charles C Pinter

Publisher: Courier Corporation

Published: 2010-01-14

Total Pages: 402

ISBN-13: 0486474178

DOWNLOAD EBOOK

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.


Elements of Abstract Algebra

Elements of Abstract Algebra

Author: Allan Clark

Publisher: Courier Corporation

Published: 2012-07-06

Total Pages: 242

ISBN-13: 0486140350

DOWNLOAD EBOOK

Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.


Galois Theory for Beginners

Galois Theory for Beginners

Author: Jörg Bewersdorff

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 202

ISBN-13: 0821838172

DOWNLOAD EBOOK

Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.


Abstract Algebra with Applications

Abstract Algebra with Applications

Author: Audrey Terras

Publisher: Cambridge University Press

Published: 2019

Total Pages: 331

ISBN-13: 1107164079

DOWNLOAD EBOOK

This text offers a friendly and concise introduction to abstract algebra, emphasizing its uses in the modern world.


Abel’s Theorem in Problems and Solutions

Abel’s Theorem in Problems and Solutions

Author: V.B. Alekseev

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 278

ISBN-13: 1402021879

DOWNLOAD EBOOK

Do formulas exist for the solution to algebraical equations in one variable of any degree like the formulas for quadratic equations? The main aim of this book is to give new geometrical proof of Abel's theorem, as proposed by Professor V.I. Arnold. The theorem states that for general algebraical equations of a degree higher than 4, there are no formulas representing roots of these equations in terms of coefficients with only arithmetic operations and radicals. A secondary, and more important aim of this book, is to acquaint the reader with two very important branches of modern mathematics: group theory and theory of functions of a complex variable. This book also has the added bonus of an extensive appendix devoted to the differential Galois theory, written by Professor A.G. Khovanskii. As this text has been written assuming no specialist prior knowledge and is composed of definitions, examples, problems and solutions, it is suitable for self-study or teaching students of mathematics, from high school to graduate.


Foundations of Galois Theory

Foundations of Galois Theory

Author: M. M. Postnikov

Publisher: Courier Corporation

Published: 2004-02-02

Total Pages: 132

ISBN-13: 9780486435183

DOWNLOAD EBOOK

Written by a prominent mathematician, this text offers advanced undergraduate and graduate students a virtually self-contained treatment of the basics of Galois theory. The source of modern abstract algebra and one of abstract algebra's most concrete applications, Galois theory serves as an excellent introduction to group theory and provides a strong, historically relevant motivation for the introduction of the basics of abstract algebra. This two-part treatment begins with the elements of Galois theory, focusing on related concepts from field theory, including the structure of important types of extensions and the field of algebraic numbers. A consideration of relevant facts from group theory leads to a survey of Galois theory, with discussions of normal extensions, the order and correspondence of the Galois group, and Galois groups of a normal subfield and of two fields. The second part explores the solution of equations by radicals, returning to the general theory of groups for relevant facts, examining equations solvable by radicals and their construction, and concluding with the unsolvability by radicals of the general equation of degree n ≥ 5.