Abelian Groups

Abelian Groups

Author: László Fuchs

Publisher: Springer

Published: 2015-12-12

Total Pages: 762

ISBN-13: 3319194224

DOWNLOAD EBOOK

Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.


Exercises in Abelian Group Theory

Exercises in Abelian Group Theory

Author: Grigore Calugareanu

Publisher: Springer Science & Business Media

Published: 2003-04-30

Total Pages: 376

ISBN-13: 9781402011832

DOWNLOAD EBOOK

This is the first book on Abelian Group Theory (or Group Theory) to cover elementary results in Abelian Groups. It contains comprehensive coverage of almost all the topics related to the theory and is designed to be used as a course book for students at both undergraduate and graduate level. The text caters to students of differing capabilities by categorising the exercises in each chapter according to their level of difficulty starting with simple exercises (marked S1, S2 etc), of medium difficulty (M1, M2 etc) and ending with difficult exercises (D1, D2 etc). Solutions for all of the exercises are included. This book should also appeal to experts in the field as an excellent reference to a large number of examples in Group Theory.


Abelian Groups and Representations of Finite Partially Ordered Sets

Abelian Groups and Representations of Finite Partially Ordered Sets

Author: David Arnold

Publisher: Springer Science & Business Media

Published: 2012-11-14

Total Pages: 256

ISBN-13: 1441987509

DOWNLOAD EBOOK

The theme of this book is an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals.


An Introduction to Algebraic Topology

An Introduction to Algebraic Topology

Author: Joseph J. Rotman

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 447

ISBN-13: 1461245761

DOWNLOAD EBOOK

A clear exposition, with exercises, of the basic ideas of algebraic topology. Suitable for a two-semester course at the beginning graduate level, it assumes a knowledge of point set topology and basic algebra. Although categories and functors are introduced early in the text, excessive generality is avoided, and the author explains the geometric or analytic origins of abstract concepts as they are introduced.


Fourier Analysis on Finite Abelian Groups

Fourier Analysis on Finite Abelian Groups

Author: Bao Luong

Publisher: Springer Science & Business Media

Published: 2009-08-14

Total Pages: 167

ISBN-13: 0817649166

DOWNLOAD EBOOK

This unified, self-contained book examines the mathematical tools used for decomposing and analyzing functions, specifically, the application of the [discrete] Fourier transform to finite Abelian groups. With countless examples and unique exercise sets at the end of each section, Fourier Analysis on Finite Abelian Groups is a perfect companion to a first course in Fourier analysis. This text introduces mathematics students to subjects that are within their reach, but it also has powerful applications that may appeal to advanced researchers and mathematicians. The only prerequisites necessary are group theory, linear algebra, and complex analysis.


A Course on Group Theory

A Course on Group Theory

Author: John S. Rose

Publisher: Courier Corporation

Published: 2013-05-27

Total Pages: 322

ISBN-13: 0486170667

DOWNLOAD EBOOK

Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.


Problems in Group Theory

Problems in Group Theory

Author: John D. Dixon

Publisher: Courier Corporation

Published: 2007-01-01

Total Pages: 194

ISBN-13: 0486459160

DOWNLOAD EBOOK

265 challenging problems in all phases of group theory, gathered for the most part from papers published since 1950, although some classics are included.


Potential Theory on Locally Compact Abelian Groups

Potential Theory on Locally Compact Abelian Groups

Author: C. van den Berg

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 205

ISBN-13: 3642661289

DOWNLOAD EBOOK

Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.