Ab Initio Variational Calculations of Molecular Vibrational-Rotational Spectra

Ab Initio Variational Calculations of Molecular Vibrational-Rotational Spectra

Author: Debra J. Searles

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 245

ISBN-13: 3662055619

DOWNLOAD EBOOK

This work had its beginnings in the early 1980s at the University ofWollongong, with significant contributions from Dr. Margret Hamilton, Professors Peter G. Burton and Greg Doherty. The emphasis was to develop computer code to solve the nuclear Schrodinger problem. For bent triatomic molecules the project was fmally realized at the University of Newcastle a decade or so later, with the contribution from Ms. Feng Wan g. Aspects of this work are now taught in the quantum mechanics and electron spectroscopy courses at The University of Newcastle. Even now "complete" ab initio solutions of the time-independent SchrOdinger equation is not commonplace for molecules containing four atoms or more. In fact, when using the Eckart-Watson nuclear Hamiltonian a further restriction needs to be imposed; that is, the molecule is restricted to undergoing small amplitudes of vibration. This Hamiltonian is useful for molecules containing massive nuclei and moreover, has been extremely useful in interpreting the rovibrational spectra of small molecules. Nevertheless, a number of nuclear Hamiltonians that do not embed an equilibrium geometry have become well established and are extremely successful in interpreting rovibrational spectra of floppy molecules. Furthermore, solution algorithms vary greatly from research group to research group and it is still unclear which aspects will survive the next decade. For example, even for a triatomic molecule a general form of a potential function has not yet been uncovered that will generally interpolate with accuracy and precision ab initio discrete surfaces.


Global and Accurate Vibration Hamiltonians from High-Resolution Molecular Spectroscopy

Global and Accurate Vibration Hamiltonians from High-Resolution Molecular Spectroscopy

Author: Michel Herman

Publisher: John Wiley & Sons

Published: 2009-09-09

Total Pages: 448

ISBN-13: 0470142200

DOWNLOAD EBOOK

The latest in a series providing chemical physicists with a forum for critical, authoritative evaluations of advances in every area of the discipline, this stand-alone volume focuses on using high resolution molecular spectroscopy to arrive at global and accurate Vibration Hamiltonians.


Vibrational-rotational Spectroscopy And Molecular Dynamics

Vibrational-rotational Spectroscopy And Molecular Dynamics

Author: Dusan Papousek

Publisher: World Scientific

Published: 1997-10-31

Total Pages: 576

ISBN-13: 9814502456

DOWNLOAD EBOOK

The book reviews the results of vibration-rotational spectroscopy of molecules obtained recently by combining modern computational methods of quantum chemistry with the new techniques of high-resolution rotational and vibration-rotational spectroscopy. It shows for example that the tunneling vibration-rotational spectroscopy of the van der Waals complexes provides a new look at intermolecular forces while the high precision and sensitivity of the submillimeter-wave and Fourier transform microwave spectroscopy make it possible to study complex rotational spectra of molecules in excited vibrational states. New results of high level ab initio quantum chemical computations of vibrational and rotational energy levels and dipole moment functions of unusual molecules will be discussed together with the recent discovery of clustering of energy levels in asymmetric tops. Group theoretical analysis of floppy molecules, especially the tunneling effects in nonrigid molecules, will also be discussed.


Vibration-rotational Spectroscopy and Molecular Dynamics

Vibration-rotational Spectroscopy and Molecular Dynamics

Author: Du?an Papou?ek

Publisher: World Scientific

Published: 1997

Total Pages: 578

ISBN-13: 9789810216351

DOWNLOAD EBOOK

The book reviews the results of vibration-rotational spectroscopy of molecules obtained recently by combining modern computational methods of quantum chemistry with the new techniques of high-resolution rotational and vibration-rotational spectroscopy. It shows for example that the tunneling vibration-rotational spectroscopy of the van der Waals complexes provides a new look at intermolecular forces while the high precision and sensitivity of the submillimeter-wave and Fourier transform microwave spectroscopy make it possible to study complex rotational spectra of molecules in excited vibrational states. New results of high level ab initio quantum chemical computations of vibrational and rotational energy levels and dipole moment functions of unusual molecules will be discussed together with the recent discovery of clustering of energy levels in asymmetric tops. Group theoretical analysis of floppy molecules, especially the tunneling effects in nonrigid molecules, will also be discussed.


Vibrational Dynamics Of Molecules

Vibrational Dynamics Of Molecules

Author: Joel M Bowman

Publisher: World Scientific

Published: 2022-06-14

Total Pages: 603

ISBN-13: 9811237921

DOWNLOAD EBOOK

Vibrational Dynamics of Molecules represents the definitive concise text on the cutting-edge field of vibrational molecular chemistry. The chapter contributors are a Who's Who of world leaders in the field. The editor, Joel Bowman, is widely considered as one of the founding fathers of theoretical reaction dynamics. The included topics span the field, from fundamental theory such as collocation methods and vibrational CI methods, to interesting applications such as astrochemistry, supramolecular systems and virtual computational spectroscopy. This is a useful reference for theoretical chemists, spectroscopists, physicists, undergraduate and graduate students, lecturers and software developers.


Molecular Quantum Similarity in QSAR and Drug Design

Molecular Quantum Similarity in QSAR and Drug Design

Author: R. Carbo-Dorca

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 138

ISBN-13: 3642572731

DOWNLOAD EBOOK

The authors introduce the concept of Molecular Quantum Similarity, developed in their laboratory, in a didactic form. The basis of the concept combines quantum theoretical calculations with molecular structure and properties even for large molecules. They give definitions and procedures to compute similarities molecules and provide graphical tools for visualization of sets of molecules as n-dimensional point charts.


Molecular Spectroscopy and Quantum Dynamics

Molecular Spectroscopy and Quantum Dynamics

Author: Roberto Marquardt

Publisher: Elsevier

Published: 2020-09-18

Total Pages: 376

ISBN-13: 0128172355

DOWNLOAD EBOOK

Molecular Spectroscopy and Quantum Dynamics, an exciting new work edited by Professors Martin Quack and Roberto Marquardt, contains comprehensive information on the current state-of-the-art experimental and theoretical methods and techniques used to unravel ultra-fast phenomena in atoms, molecules and condensed matter, along with future perspectives on the field. - Contains new insights into the quantum dynamics and spectroscopy of electronic and nuclear motion - Presents the most recent developments in the detection and interpretation of ultra-fast phenomena - Includes a discussion of the importance of these phenomena for the understanding of chemical reaction dynamics and kinetics in relation to molecular spectra and structure


Handbook of High-resolution Spectroscopy

Handbook of High-resolution Spectroscopy

Author: Martin Quack

Publisher: John Wiley & Sons

Published: 2011-09-26

Total Pages: 2236

ISBN-13: 0470066539

DOWNLOAD EBOOK

The field of High-Resolution Spectroscopy has been considerably extended and even redefined in some areas. Combining the knowledge of spectroscopy, laser technology, chemical computation, and experiments, Handbook of High-Resolution Spectroscopy provides a comprehensive survey of the whole field as it presents itself today, with emphasis on the recent developments. This essential handbook for advanced research students, graduate students, and researchers takes a systematic approach through the range of wavelengths and includes the latest advances in experiment and theory that will help and guide future applications. The first comprehensive survey in high-resolution molecular spectroscopy for over 15 years Brings together the knowledge of spectroscopy, laser technology, chemical computation and experiments Brings the reader up-to-date with the many advances that have been made in recent times Takes the reader through the range of wavelengths, covering all possible techniques such as Microwave Spectroscopy, Infrared Spectroscopy, Raman Spectroscopy, VIS, UV and VUV Combines theoretical, computational and experimental aspects Has numerous applications in a wide range of scientific domains Edited by two leaders in this field Provides an overview of rotational, vibration, electronic and photoelectron spectroscopy Volume 1 - Introduction: Fundamentals of Molecular Spectroscopy Volume 2 - High-Resolution Molecular Spectroscopy: Methods and Results Volume 3 - Special Methods & Applications


Molecular Symmetry and Spectroscopy

Molecular Symmetry and Spectroscopy

Author: Philip R. Bunker

Publisher: NRC Research Press

Published: 2006

Total Pages: 778

ISBN-13: 9780660196282

DOWNLOAD EBOOK

The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning the Jahn-Teller effect, the Renner effect, Multichannel Quantum Defect Theory, the use of variational methods for calculating rotational-vibration energy levels, and the contact transformed rotation-vibration Hamiltonian. A new chapter is devoted entirely to weakly bound cluster molecules (often called Van der Waals molecules). A selection of experimental spectra is included in order to illustrate particular theoretical points.


Potential Energy Surfaces

Potential Energy Surfaces

Author: Alexander F. Sax

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 3642468799

DOWNLOAD EBOOK

Potential Energy Surfaces is a collection of lectures given at the 1996 Mariapfarr Workshop in Theoretical Chemistry, organized by Alexander F. Sax. The Mariapfarr Workshops' aim is to discuss in-depth topics in Theoretical Chemistry. The target group of these workshops is graduate students and postdocs.