Understanding the reactivity of monomers is crucial in creating copolymers and determining the outcome of copolymerization. Covering the fundamental aspects of polymerization, Synthesis and Applications of Copolymers explores the reactivity of monomers and reaction conditions that ensure that the newly formed polymeric materials exhibit desired properties. Referencing a wide-range of disciplines, the book provides researchers, students, and scientists with the preparation of a diverse variety of copolymers and their recent developments, with a particular focus on copolymerization, crystallization, and techniques like nanoimprinting and micropatterning.
Block copolymers (BCPs) consist of two or more chemically different polymers connected covalently, and are polymer alloys. Due to their thermodynamic incompatibility and chain connectivity, the phase separation between two (or more) blocks occurs only in a tens of nanometers range. Nanostructures are based on block copolymer self-assembly. They are functional nanomaterials less than 100nm in size and have received extensive scientific and technological attention due to their potential applications in electronic, biomedical, and optical materials. This chapter examines a variety of different synthetic strategies for preparation of linear diblock copolymers by anionic polymerization. Triblocks can be synthesized according to an appropriate synthetic pathway, depending on the monomers used and their sequence in the triblock chain. Nonlinear block copolymers including star block copolymers, graft copolymers, miktoarm star copolymers, cyclic block copolymers, and other complex architectures are explained. Microphase separation drives BCPs to self-assemble, resulting in ordered nanostructures, including spheres, cylinders, gyroids, and lamellae, depending on the composition of the BCP. In nanotechnology, self-assembly (SA) underlies various types of molecular structures built from nanoparticles, nanotubes, or nanorods. Supramolecular structures generated from amphiphilic block copolymers are characterized by a slow rate of intermicellar chain exchange which makes them interesting for a variety of applications. Basic principles of self-assembly and micellization of block copolymers in dilute solution, methods for stabilization of the macromolecular aggregates, are discussed. Stabilized nanoparticles, the so-called “smart materials,” which show responses to environmental changes (pH, temperature, ionic strength, etc.), are presented with a focus on their applications.
Biocidal polymers are designed to inhibit or kill microorganisms such as bacteria, fungi and protozoans. This book summarizes recent findings in the synthesis, modification and characterization of various antimicrobial polymers ranging from plastics and elastomers to biomimetic and biodegradable polymers. Modifications with different antimicrobial agents as well as antimicrobial testing methods are described in a comprehensive manner.
Offering a unique perspective summarizing research on this timely important topic around the globe, this book provides comprehensive coverage of how molecular biomass can be transformed into sustainable polymers. It critically discusses and compares a few classes of biomass - oxygen-rich, hydrocarbon-rich, hydrocarbon and non-hydrocarbon (including carbon dioxide) as well as natural polymers - and equally includes products that are already commercialized. A must-have for both newcomers to the field as well as established researchers in both academia and industry.
Klassische und moderne Verfahren der radikalischen Polymerisation: In diesem handlichen Band finden Sie Antworten auf theoretische und praktische Fragen. Neben grundlegenden Ausführungen zur Einteilung radikalischer Polymere sind Angaben über die wichtigsten experimentellen Verfahren zur Synthese, Reinigung und Charakterisierung von Polymeren enthalten. Interessante Zugabe: ein Abriß der Geschichte der Radikalkettenpolymerisation.
Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.
Understanding the dynamics of reactive polymer processes allows scientists to create new, high-value, high-performance polymers. This book is an indispensable resource for researchers and practitioners working in this area. It includes coverage of thermoplastics, thermoset and reactive polymers, together with practical industrial processes and modern chemorheological models and tools.