We also show how the first-order variational principle can be used to derive rigorous boundary conditions for the even-order $P\sb{N}$ approximations and that these $P\sb{N}$ approximations can provide accurate numerical results.
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.
In a part of North Africa where, within miles, the backdrop can change dramatically from snow-blasted mountains to wind-scoured dunes live the Berber people of the Atlas Mountains. In the third book of her trilogy on African women, world-renowned photojournalist Margaret Courtney-Clarke examines the difficult lives and remarkable arts of Berber women. As modern times and modern warfare in Algeria, Morocco, and Tunisia have encroached on their centuries-old traditions, Berber women have begun to give up the old ways. Imazighen: The Vanishing Traditions of Berber Women is a record of a quickly disappearing way of life. As in her earlier books, Ndebele: The Art of an African Tribe and African Canvas: The Art of West African Women, Courtney-Clarke succeeds in capturing the spirit of the women by experiencing their world from season to season and by respecting their values and traditions. Through photographs, interviews, and observations, Courtney-Clarke documents the Berber women as they stoically carry water and firewood on their backs for miles of rocky terrain. And she records the beauty they have magically produced in their lives - through their spinning and weaving and their carefully coiled pottery - a metaphor for survival and creativity. Geraldine Brooks, award-winning journalist and an expert on life in the Middle East, accompanied Courtney-Clarke on her last trip to North Africa, and has written moving, thoughtful essays on the struggle of existence among the Berbers. With a glossary of Berber terms and a detailed map of the region, this book is not only a handsomely illustrated volume of the triumph of the arts of the Berber women, but a dramatic record of a people yielding to the pressures of the twentieth century.
This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used with upscaling methods to deliver parameters needed in semi-classical models for semiconductor devices, such as quantum well lasers. This book covers in detail all these three aspects using a variety of illustrative examples. Readers will gain detailed insights into the status of the multiband effective mass method for semiconductor nano structures. Both users of the kp method as well as advanced researchers who want to advance the kp method further will find helpful information on how to best work with this method and use it as a tool for characterizing the physical properties of semiconductor nano structures. The book is primarily intended for graduate and Ph.D. students in applied mathematics, mathematical physics and theoretical physics, as well as all those working in quantum mechanical research or the semiconductor / opto-electronic industry who are interested in new mathematical aspects.
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.
A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.