A User's Guide to Spectral Sequences

A User's Guide to Spectral Sequences

Author: John McCleary

Publisher: Cambridge University Press

Published: 2001

Total Pages: 579

ISBN-13: 0521567599

DOWNLOAD EBOOK

Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.


Bordism, Stable Homotopy and Adams Spectral Sequences

Bordism, Stable Homotopy and Adams Spectral Sequences

Author: Stanley O. Kochman

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 294

ISBN-13: 9780821806005

DOWNLOAD EBOOK

This book is a compilation of lecture notes that were prepared for the graduate course ``Adams Spectral Sequences and Stable Homotopy Theory'' given at The Fields Institute during the fall of 1995. The aim of this volume is to prepare students with a knowledge of elementary algebraic topology to study recent developments in stable homotopy theory, such as the nilpotence and periodicity theorems. Suitable as a text for an intermediate course in algebraic topology, this book provides a direct exposition of the basic concepts of bordism, characteristic classes, Adams spectral sequences, Brown-Peterson spectra and the computation of stable stems. The key ideas are presented in complete detail without becoming encyclopedic. The approach to characteristic classes and some of the methods for computing stable stems have not been published previously. All results are proved in complete detail. Only elementary facts from algebraic topology and homological algebra are assumed. Each chapter concludes with a guide for further study.


K-theory

K-theory

Author: Michael Atiyah

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 181

ISBN-13: 0429973179

DOWNLOAD EBOOK

These notes are based on the course of lectures I gave at Harvard in the fall of 1964. They constitute a self-contained account of vector bundles and K-theory assuming only the rudiments of point-set topology and linear algebra. One of the features of the treatment is that no use is made of ordinary homology or cohomology theory. In fact, rational cohomology is defined in terms of K-theory.The theory is taken as far as the solution of the Hopf invariant problem and a start is mode on the J-homomorphism. In addition to the lecture notes proper, two papers of mine published since 1964 have been reproduced at the end. The first, dealing with operations, is a natural supplement to the material in Chapter III. It provides an alternative approach to operations which is less slick but more fundamental than the Grothendieck method of Chapter III, and it relates operations and filtration. Actually, the lectures deal with compact spaces, not cell-complexes, and so the skeleton-filtration does not figure in the notes. The second paper provides a new approach to K-theory and so fills an obvious gap in the lecture notes.


A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

Published: 1999-09

Total Pages: 262

ISBN-13: 9780226511832

DOWNLOAD EBOOK

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.


Lunar Sourcebook

Lunar Sourcebook

Author: Grant Heiken

Publisher: CUP Archive

Published: 1991-04-26

Total Pages: 796

ISBN-13: 9780521334440

DOWNLOAD EBOOK

The only work to date to collect data gathered during the American and Soviet missions in an accessible and complete reference of current scientific and technical information about the Moon.


Geometry from a Differentiable Viewpoint

Geometry from a Differentiable Viewpoint

Author: John McCleary

Publisher: Cambridge University Press

Published: 2013

Total Pages: 375

ISBN-13: 0521116074

DOWNLOAD EBOOK

A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.


Stable Homotopy and Generalised Homology

Stable Homotopy and Generalised Homology

Author: John Frank Adams

Publisher: University of Chicago Press

Published: 1974

Total Pages: 384

ISBN-13: 0226005240

DOWNLOAD EBOOK

J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.


Generalized Cohomology

Generalized Cohomology

Author: Akira Kōno

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 276

ISBN-13: 9780821835142

DOWNLOAD EBOOK

Aims to give an exposition of generalized (co)homology theories that can be read by a group of mathematicians who are not experts in algebraic topology. This title starts with basic notions of homotopy theory, and introduces the axioms of generalized (co)homology theory. It also discusses various types of generalized cohomology theories.


An Introduction to Homological Algebra

An Introduction to Homological Algebra

Author: Charles A. Weibel

Publisher: Cambridge University Press

Published: 1995-10-27

Total Pages: 470

ISBN-13: 113964307X

DOWNLOAD EBOOK

The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.


Lectures on Vanishing Theorems

Lectures on Vanishing Theorems

Author: Esnault

Publisher: Springer Science & Business Media

Published: 1992-12-01

Total Pages: 180

ISBN-13: 9783764328221

DOWNLOAD EBOOK

Introduction M. Kodaira's vanishing theorem, saying that the inverse of an ample invert ible sheaf on a projective complex manifold X has no cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre's GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projective manifolds over a field k of characteristic p = 0, for a long time no algebraic proof was known and no generalization to p > 0, except for certain lower dimensional manifolds. Worse, counterexamples due to M. Raynaud [52J showed that in characteristic p > 0 some additional assumptions were needed. This was the state of the art until P. Deligne and 1. Illusie [12J proved the degeneration of the Hodge to de Rham spectral sequence for projective manifolds X defined over a field k of characteristic p > 0 and liftable to the second Witt vectors W2(k). Standard degeneration arguments allow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re sult which again could only be obtained by analytic and differential geometric methods beforehand. As a corollary of their methods M. Raynaud (loc. cit.) gave an easy proof of Kodaira vanishing in all characteristics, provided that X lifts to W2(k).