A User's Guide to Measure Theoretic Probability

A User's Guide to Measure Theoretic Probability

Author: David Pollard

Publisher: Cambridge University Press

Published: 2002

Total Pages: 372

ISBN-13: 9780521002899

DOWNLOAD EBOOK

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.


A First Look at Rigorous Probability Theory

A First Look at Rigorous Probability Theory

Author: Jeffrey Seth Rosenthal

Publisher: World Scientific

Published: 2006

Total Pages: 238

ISBN-13: 9812703705

DOWNLOAD EBOOK

Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.


Measure, Integral and Probability

Measure, Integral and Probability

Author: Marek Capinski

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 229

ISBN-13: 1447136314

DOWNLOAD EBOOK

This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.


Probability

Probability

Author: Rick Durrett

Publisher: Cambridge University Press

Published: 2010-08-30

Total Pages:

ISBN-13: 113949113X

DOWNLOAD EBOOK

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.


Probability and Measure Theory

Probability and Measure Theory

Author: Robert B. Ash

Publisher: Academic Press

Published: 2000

Total Pages: 536

ISBN-13: 9780120652020

DOWNLOAD EBOOK

Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization


Measure, Integration & Real Analysis

Measure, Integration & Real Analysis

Author: Sheldon Axler

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 430

ISBN-13: 3030331431

DOWNLOAD EBOOK

This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/


Probability Theory in Finance

Probability Theory in Finance

Author: Seán Dineen

Publisher: American Mathematical Soc.

Published: 2013-05-22

Total Pages: 323

ISBN-13: 0821894900

DOWNLOAD EBOOK

The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of


High-Dimensional Probability

High-Dimensional Probability

Author: Roman Vershynin

Publisher: Cambridge University Press

Published: 2018-09-27

Total Pages: 299

ISBN-13: 1108415199

DOWNLOAD EBOOK

An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.


Probability and Measure

Probability and Measure

Author: Patrick Billingsley

Publisher: John Wiley & Sons

Published: 2017

Total Pages: 612

ISBN-13: 9788126517718

DOWNLOAD EBOOK

Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes


Introduction to Probability

Introduction to Probability

Author: David F. Anderson

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 447

ISBN-13: 110824498X

DOWNLOAD EBOOK

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.