A Tour Through Mathematical Logic

A Tour Through Mathematical Logic

Author: Robert S. Wolf

Publisher: American Mathematical Soc.

Published: 2005-12-31

Total Pages: 414

ISBN-13: 161444028X

DOWNLOAD EBOOK

A Tour Through Mathematical Logic provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.


A Tour Through Mathematical Logic

A Tour Through Mathematical Logic

Author: Robert S. Wolf

Publisher: Cambridge University Press

Published: 2005-03-10

Total Pages: 424

ISBN-13: 9780883850367

DOWNLOAD EBOOK

The foundations of mathematics include mathematical logic, set theory, recursion theory, model theory, and Gdel's incompleteness theorems. Professor Wolf provides here a guide that any interested reader with some post-calculus experience in mathematics can read, enjoy, and learn from. It could also serve as a textbook for courses in the foundations of mathematics, at the undergraduate or graduate level. The book is deliberately less structured and more user-friendly than standard texts on foundations, so will also be attractive to those outside the classroom environment wanting to learn about the subject.


A Tour through Mathematical Logic

A Tour through Mathematical Logic

Author: Robert S. Wolf

Publisher: Mathematical Association of America

Published: 2010-09-16

Total Pages: 414

ISBN-13: 9780883850428

DOWNLOAD EBOOK

The foundations of mathematics include mathematical logic, set theory, recursion theory, model theory, and Gödel's incompleteness theorems. Professor Wolf provides here a guide that any interested reader with some post-calculus experience in mathematics can read, enjoy, and learn from. It could also serve as a textbook for courses in the foundations of mathematics, at the undergraduate or graduate level. The book is deliberately less structured and more user-friendly than standard texts on foundations, so will also be attractive to those outside the classroom environment wanting to learn about the subject.


A Profile of Mathematical Logic

A Profile of Mathematical Logic

Author: Howard DeLong

Publisher: Courier Corporation

Published: 2012-09-26

Total Pages: 322

ISBN-13: 0486139158

DOWNLOAD EBOOK

This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.


What Is Mathematical Logic?

What Is Mathematical Logic?

Author: J. N. Crossley

Publisher: Courier Corporation

Published: 2012-08-29

Total Pages: 99

ISBN-13: 0486151522

DOWNLOAD EBOOK

A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.


An Introduction to Mathematical Logic

An Introduction to Mathematical Logic

Author: Richard E. Hodel

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 514

ISBN-13: 0486497852

DOWNLOAD EBOOK

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.


Introduction to Mathematical Logic

Introduction to Mathematical Logic

Author: Elliot Mendelsohn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 1461572886

DOWNLOAD EBOOK

This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.


Mathematical Logic

Mathematical Logic

Author: H.-D. Ebbinghaus

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 290

ISBN-13: 1475723555

DOWNLOAD EBOOK

This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.


A Concise Introduction to Mathematical Logic

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer

Published: 2010-07-01

Total Pages: 337

ISBN-13: 1441912215

DOWNLOAD EBOOK

Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.


Mathematical Logic

Mathematical Logic

Author: George Tourlakis

Publisher: John Wiley & Sons

Published: 2011-03-01

Total Pages: 314

ISBN-13: 1118030699

DOWNLOAD EBOOK

A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.