Intended to serve as a textbook of Applied Physics / Physics paper of the undergraduate students of B.E., B.Tech and B.Sc. Exhaustive treatment of topics in optics, mechanics, relativistic mechanics, laser, optical fibres and holography have been included.
For upper-level undergraduates and graduate students: an introduction to the fundamentals of quantum mechanics, emphasizing aspects essential to an understanding of solid-state theory. Numerous problems (and selected answers), projects, exercises.
This book is meant to serve as a textbook of Physics for the undergraduate students of science and engineering. Exhausted treatment of topics in quantum mechanics, statistical mechanics, nuclear physics, electromagnetic theory, X-rays production, properties and applications and ultrasonics and accoustics of buildings have been presented. These topics have been presented in easy to understand and simple language. Large number of solved numericals have been included to give a quantitative idea of the subject. Short and long answer type questions and unsolved numericals have been given at the end of each chapter for practice. New in this edition: Four new chapters have been added, namely: • Physics of Semiconductors • Dielectric, Ferroelectric and Piezoelectric Properties of Materials • Superconductivity • Nanomaterials
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
This book is intended to serve as a textbook of applied physics/Physics paper of the undergraduate students of B.E., B.Tech and B.Sc. Exhaustive treatment of topics in optics, mechanics, relativistic mechanics, laser, optical fibres and holography have been included. Physics is best learnt by conceptualization of the involved principles and to help the students conceptualize the involved principles, the text has been presented in an easy to understand manner. Large number of solved numericals have been included in the book to give a quantitative idea of the subject. Exercises and unsolved numericals have been given at the end of each chapter for practice. The book will also be useful for the students taking various competitive examinations.
This highly successful textbook presents clear, to-the-point topical coverage of basic physics applied to industrial and technical fields. A wealth of real-world applications are presented, motivating students by teaching physics concepts in context. KEY FEATURES: Detailed, well-illustrated examples support student understanding of skills and concepts. Extensive problem sets assist student learning by providing ample opportunity for practice. Physics Connections relate the text material to everyday life experiences. Applied Concepts problems foster critical thinking. Try This Activity involve demonstrations or mini-activities that can be performed by students to experience a physics concept. Biographical sketches of important scientists connect ideas with real people. Unique Problem-Solving Method This textbook teaches students to use a proven, effective problem-solving methodology. The consistent use of this special problem-solving method trains students to make a sketch, identify the data elements, select the appropriate equation, solve for the unknown quantity, and substitute the data in the working equation. An icon that outlines the method is placed in the margin of most problem sets as a reminder to students. NEW TO THIS EDITION NEW! Appendix C, Problem-Solving Strategy: Dimensional and Unit Analysis NEW! Section on Alternative Energy Sources NEW! "Physics Connections" features More than 80 new color photos and 30 art illustrations enhance student learning A companion Laboratory Manual contains laboratory exercises that reinforce and illustrate the physics principles. For Additional online resources visit: www.prenhall.com/ewen
This textbook is a follow-up to the volume Principles of Engineering Physics 1 and aims for an introductory course in engineering physics. It provides a balance between theoretical concepts and their applications. Fundamental concepts of crystal structure including lattice directions and planes, atomic packing factor, diffraction by crystal, reciprocal lattics and intensity of diffracted beam are extensively discussed in the book. The book also covers topics related to superconductivity, optoelectronic devices, dielectric materials, semiconductors, electron theory of solids and energy bands in solids. The text is written in a logical and coherent manner for easy understanding by students. Emphasis has been given to an understanding of the basic concepts and their applications to a number of engineering problems. Each topic is discussed in detail both conceptually and mathematically, so that students will not face comprehension difficulties. Derivations and solved problems are provided in a step-by-step approach.