A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic

Author: Grigori Mints

Publisher: Springer Science & Business Media

Published: 2005-12-20

Total Pages: 130

ISBN-13: 0306469758

DOWNLOAD EBOOK

Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999.


A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic

Author: Grigori Mints

Publisher: Springer Science & Business Media

Published: 2000-10-31

Total Pages: 130

ISBN-13: 0306463946

DOWNLOAD EBOOK

Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs to make the material more accessible. The presentation is based on natural deduction and readers are assumed to be familiar with basic notions of first order logic.


Philosophical and Mathematical Logic

Philosophical and Mathematical Logic

Author: Harrie de Swart

Publisher: Springer

Published: 2018-11-28

Total Pages: 558

ISBN-13: 3030032558

DOWNLOAD EBOOK

This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo


The Boundary Stones of Thought

The Boundary Stones of Thought

Author: Ian Rumfitt

Publisher:

Published: 2015

Total Pages: 369

ISBN-13: 0198733631

DOWNLOAD EBOOK

Classical logic has been attacked by adherents of rival, anti-realist logical systems: Ian Rumfitt comes to its defence. He considers the nature of logic, and how to arbitrate between different logics. He argues that classical logic may dispense with the principle of bivalence, and may thus be liberated from the dead hand of classical semantics.


Treatise on Intuitionistic Type Theory

Treatise on Intuitionistic Type Theory

Author: Johan Georg Granström

Publisher: Springer Science & Business Media

Published: 2011-06-02

Total Pages: 198

ISBN-13: 9400717369

DOWNLOAD EBOOK

Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.


Logical Foundations of Computer Science

Logical Foundations of Computer Science

Author: Sergei Artemov

Publisher: Springer

Published: 2007-06-30

Total Pages: 522

ISBN-13: 3540727345

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2007, held in New York, NY, USA in June 2007. The volume presents 36 revised refereed papers that address all current aspects of logic in computer science.


Mathematical Logic and Computation

Mathematical Logic and Computation

Author: Jeremy Avigad

Publisher: Cambridge University Press

Published: 2022-09-30

Total Pages: 527

ISBN-13: 1108478751

DOWNLOAD EBOOK

A thorough introduction to the fundamental methods and results in mathematical logic, and its foundational role in computer science.


Logic and Structure

Logic and Structure

Author: Dirk van Dalen

Publisher: Springer Science & Business Media

Published: 2012-11-13

Total Pages: 267

ISBN-13: 1447145585

DOWNLOAD EBOOK

Dirk van Dalen’s popular textbook Logic and Structure, now in its fifth edition, provides a comprehensive introduction to the basics of classical and intuitionistic logic, model theory and Gödel’s famous incompleteness theorem. Propositional and predicate logic are presented in an easy-to-read style using Gentzen’s natural deduction. The book proceeds with some basic concepts and facts of model theory: a discussion on compactness, Skolem-Löwenheim, non-standard models and quantifier elimination. The discussion of classical logic is concluded with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, intuitionistic logic and Kripke semantics is carefully explored. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property are also included. The last chapter on Gödel's first incompleteness theorem is self-contained and provides a systematic exposition of the necessary recursion theory. This new edition has been properly revised and contains a new section on ultra-products.


Mathematical Logic

Mathematical Logic

Author: J.D. Monk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 535

ISBN-13: 146849452X

DOWNLOAD EBOOK

From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data." There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.