A Second Course in Probability

A Second Course in Probability

Author: Sheldon M. Ross

Publisher: Cambridge University Press

Published: 2023-07-31

Total Pages: 192

ISBN-13: 1009189239

DOWNLOAD EBOOK

Written by Sheldon Ross and Erol Peköz, this text familiarises you with advanced topics in probability while keeping the mathematical prerequisites to a minimum. Topics covered include measure theory, limit theorems, bounding probabilities and expectations, coupling and Stein's method, martingales, Markov chains, renewal theory, and Brownian motion. No other text covers all these topics rigorously but at such an accessible level - all you need is an undergraduate-level understanding of calculus and probability. New to this edition are sections on the gambler's ruin problem, Stein's method as applied to exponential approximations, and applications of the martingale stopping theorem. Extra end-of-chapter exercises have also been added, with selected solutions available.This is an ideal textbook for students taking an advanced undergraduate or graduate course in probability. It also represents a useful resource for professionals in relevant application domains, from finance to machine learning.


A Second Course in Probability

A Second Course in Probability

Author: Sheldon M. Ross

Publisher: Cambridge University Press

Published: 2023-08-31

Total Pages: 191

ISBN-13: 1009179918

DOWNLOAD EBOOK

The second edition of this popular text explores advanced topics in probability while keeping mathematical prerequisites to a minimum. With copious exercises and examples, it is an ideal guide for graduate students and professionals in application domains that depend on probability, including operations research, finance and machine learning.


A Course in Probability Theory

A Course in Probability Theory

Author: Kai Lai Chung

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 381

ISBN-13: 0080570402

DOWNLOAD EBOOK

This book contains about 500 exercises consisting mostly of special cases and examples, second thoughts and alternative arguments, natural extensions, and some novel departures. With a few obvious exceptions they are neither profound nor trivial, and hints and comments are appended to many of them. If they tend to be somewhat inbred, at least they are relevant to the text and should help in its digestion. As a bold venture I have marked a few of them with a * to indicate a "must", although no rigid standard of selection has been used. Some of these are needed in the book, but in any case the reader's study of the text will be more complete after he has tried at least those problems.


A First Look at Rigorous Probability Theory

A First Look at Rigorous Probability Theory

Author: Jeffrey Seth Rosenthal

Publisher: World Scientific

Published: 2006

Total Pages: 238

ISBN-13: 9812703705

DOWNLOAD EBOOK

Features an introduction to probability theory using measure theory. This work provides proofs of the essential introductory results and presents the measure theory and mathematical details in terms of intuitive probabilistic concepts, rather than as separate, imposing subjects.


Probability: A Graduate Course

Probability: A Graduate Course

Author: Allan Gut

Publisher: Springer Science & Business Media

Published: 2006-03-16

Total Pages: 617

ISBN-13: 0387273328

DOWNLOAD EBOOK

This textbook on the theory of probability starts from the premise that rather than being a purely mathematical discipline, probability theory is an intimate companion of statistics. The book starts with the basic tools, and goes on to cover a number of subjects in detail, including chapters on inequalities, characteristic functions and convergence. This is followed by explanations of the three main subjects in probability: the law of large numbers, the central limit theorem, and the law of the iterated logarithm. After a discussion of generalizations and extensions, the book concludes with an extensive chapter on martingales.


Introduction to Probability

Introduction to Probability

Author: Joseph K. Blitzstein

Publisher: CRC Press

Published: 2014-07-24

Total Pages: 599

ISBN-13: 1466575573

DOWNLOAD EBOOK

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.


A Basic Course in Probability Theory

A Basic Course in Probability Theory

Author: Rabi Bhattacharya

Publisher: Springer

Published: 2017-02-21

Total Pages: 0

ISBN-13: 9783319479729

DOWNLOAD EBOOK

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer–Chernoff, Bahadur–Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry–Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications.


Introduction to Probability

Introduction to Probability

Author: David F. Anderson

Publisher: Cambridge University Press

Published: 2017-11-02

Total Pages: 447

ISBN-13: 110824498X

DOWNLOAD EBOOK

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.