A Concise History of Mathematics

A Concise History of Mathematics

Author: Dirk Jan Struik

Publisher: Courier Corporation

Published: 1967

Total Pages: 260

ISBN-13: 9780486602554

DOWNLOAD EBOOK

This compact, well-written history covers major mathematical ideas and techniques from the ancient Near East to 20th-century computer theory, surveying the works of Archimedes, Pascal, Gauss, Hilbert, and many others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature.


A Primer of Real Analytic Functions

A Primer of Real Analytic Functions

Author: KRANTZ

Publisher: Birkhäuser

Published: 2013-03-09

Total Pages: 190

ISBN-13: 3034876440

DOWNLOAD EBOOK

The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.


The Calculus Primer

The Calculus Primer

Author: William L. Schaaf

Publisher: Courier Corporation

Published: 2014-03-05

Total Pages: 434

ISBN-13: 0486172643

DOWNLOAD EBOOK

Comprehensive but concise, this introduction to differential and integral calculus covers all the topics usually included in a first course. The straightforward development places less emphasis on mathematical rigor, and the informal manner of presentation sets students at ease. Many carefully worked-out examples illuminate the text, in addition to numerous diagrams, problems, and answers. Bearing the needs of beginners constantly in mind, the treatment covers all the basic concepts of calculus: functions, derivatives, differentiation of algebraic and transcendental functions, partial differentiation, indeterminate forms, general and special methods of integration, the definite integral, partial integration, and other fundamentals. Ample exercises permit students to test their grasp of subjects before moving forward, making this volume appropriate not only for classroom use but also for review and home study.


Mathematics of Planet Earth

Mathematics of Planet Earth

Author: Ben Calderhead

Publisher: World Scientific

Published: 2018

Total Pages: 350

ISBN-13: 9781786343833

DOWNLOAD EBOOK

Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.


A Primer of Abstract Mathematics

A Primer of Abstract Mathematics

Author: Robert B. Ash

Publisher: American Mathematical Soc.

Published: 2020-03-02

Total Pages: 193

ISBN-13: 1470457091

DOWNLOAD EBOOK

The purpose of this book is to prepare the reader for coping with abstract mathematics. The intended audience is both students taking a first course in abstract algebra who feel the need to strengthen their background and those from a more applied background who need some experience in dealing with abstract ideas. Learning any area of abstract mathematics requires not only ability to write formally but also to think intuitively about what is going on and to describe that process clearly and cogently in ordinary English. Ash tries to aid intuition by keeping proofs short and as informal as possible and using concrete examples as illustration. Thus, it is an ideal textbook for an audience with limited experience in formalism and abstraction. A number of expository innovations are included, for example, an informal development of set theory which teaches students all the basic results for algebra in one chapter.


A Primer for Mathematics Competitions

A Primer for Mathematics Competitions

Author: Alexander Zawaira

Publisher: OUP Oxford

Published: 2008-10-31

Total Pages: 368

ISBN-13: 0191561703

DOWNLOAD EBOOK

The importance of mathematics competitions has been widely recognised for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded. Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest. An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement. As a bonus the aspiring "mathlete" may encounter, in the most enjoyable way possible, many of the topics that form the core of the standard school curriculum.


A Mathematical Primer for Social Statistics

A Mathematical Primer for Social Statistics

Author: John Fox

Publisher: SAGE

Published: 2009

Total Pages: 185

ISBN-13: 1412960800

DOWNLOAD EBOOK

The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods


A Primer on Mapping Class Groups

A Primer on Mapping Class Groups

Author: Benson Farb

Publisher: Princeton University Press

Published: 2012

Total Pages: 490

ISBN-13: 0691147949

DOWNLOAD EBOOK

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.