Although traditional texts present isolated algorithms and data structures, they do not provide a unifying structure and offer little guidance on how to appropriately select among them. Furthermore, these texts furnish little, if any, source code and leave many of the more difficult aspects of the implementation as exercises. A fresh alternative to
This practical text contains fairly "traditional" coverage of data structures with a clear and complete use of algorithm analysis, and some emphasis on file processing techniques as relevant to modern programmers. It fully integrates OO programming with these topics, as part of the detailed presentation of OO programming itself.Chapter topics include lists, stacks, and queues; binary and general trees; graphs; file processing and external sorting; searching; indexing; and limits to computation.For programmers who need a good reference on data structures.
Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.
For the second or third programming course. A practical and unique approach to data structures that separates interface from implementation. This book provides a practical introduction to data structures with an emphasis on abstract thinking and problem solving, as well as the use of Java. It does this through what remains a unique approach that clearly separates each data structure’s interface (how to use a data structure) from its implementation (how to actually program that structure). Parts I (Tour of Java), II (Algorithms and Building Blocks), and III (Applications) lay the groundwork by discussing basic concepts and tools and providing some practical examples, while Part IV (Implementations) focuses on implementation of data structures. This forces the reader to think about the functionality of the data structures before the hash table is implemented. The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps. Upon purchase, you'll gain instant access to this eBook. Time limit The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
The design and analysis of efficient data structures has long been recognized as a key component of the Computer Science curriculum. Goodrich, Tomassia and Goldwasser's approach to this classic topic is based on the object-oriented paradigm as the framework of choice for the design of data structures. For each ADT presented in the text, the authors provide an associated Java interface. Concrete data structures realizing the ADTs are provided as Java classes implementing the interfaces. The Java code implementing fundamental data structures in this book is organized in a single Java package, net.datastructures. This package forms a coherent library of data structures and algorithms in Java specifically designed for educational purposes in a way that is complimentary with the Java Collections Framework.
A student-friendly text, A Concise Introduction to Data Structures Using Java takes a developmental approach, starting with simpler concepts first and then building toward greater complexity. Important topics, such as linked lists, are introduced gradually and revisited with increasing depth. More code and guidance are provided at the beginning, al
As an experienced JavaScript developer moving to server-side programming, you need to implement classic data structures and algorithms associated with conventional object-oriented languages like C# and Java. This practical guide shows you how to work hands-on with a variety of storage mechanisms—including linked lists, stacks, queues, and graphs—within the constraints of the JavaScript environment. Determine which data structures and algorithms are most appropriate for the problems you’re trying to solve, and understand the tradeoffs when using them in a JavaScript program. An overview of the JavaScript features used throughout the book is also included. This book covers: Arrays and lists: the most common data structures Stacks and queues: more complex list-like data structures Linked lists: how they overcome the shortcomings of arrays Dictionaries: storing data as key-value pairs Hashing: good for quick insertion and retrieval Sets: useful for storing unique elements that appear only once Binary Trees: storing data in a hierarchical manner Graphs and graph algorithms: ideal for modeling networks Algorithms: including those that help you sort or search data Advanced algorithms: dynamic programming and greedy algorithms
If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.
Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs -- with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will: Solve a particular coding problem or improve on the performance of an existing solution Quickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to use Get algorithmic solutions in C, C++, Java, and Ruby with implementation tips Learn the expected performance of an algorithm, and the conditions it needs to perform at its best Discover the impact that similar design decisions have on different algorithms Learn advanced data structures to improve the efficiency of algorithms With Algorithms in a Nutshell, you'll learn how to improve the performance of key algorithms essential for the success of your software applications.