This book covers many facets of plant selenium (Se) accumulation: molecular genetics, biochemistry, physiology, and ecological and evolutionary aspects. Broader impacts and applications of plant Se accumulation also receive attention. Plant Se accumulation is very relevant for environmental and human health. Selenium is both essential at low levels and toxic at high levels, and both Se deficiency and toxicity are problems worldwide. Selenium can positively affect crop productivity and nutritional value. Plants may also be used to clean up excess environmental Se. Selenium in plants has profound ecological impact, and likely contributes to Se movement in ecosystems and global Se cycling.
"Microbiology covers the scope and sequence requirements for a single-semester microbiology course for non-majors. The book presents the core concepts of microbiology with a focus on applications for careers in allied health. The pedagogical features of the text make the material interesting and accessible while maintaining the career-application focus and scientific rigor inherent in the subject matter. Microbiology's art program enhances students' understanding of concepts through clear and effective illustrations, diagrams, and photographs. Microbiology is produced through a collaborative publishing agreement between OpenStax and the American Society for Microbiology Press. The book aligns with the curriculum guidelines of the American Society for Microbiology."--BC Campus website.
This book summarizes the current state of knowledge concerning bacteria that use halogenated organic compounds as respiratory electron acceptors. The discovery of organohalide-respiring bacteria has expanded the range of electron acceptors used for energy conservation, and serves as a prime example of how scientific discoveries are enabling innovative engineering solutions that have transformed remediation practice. Individual chapters provide in-depth background information on the discovery, isolation, phylogeny, biochemistry, genomic features, and ecology of individual organohalide-respiring genera, including Dehalococcoides, Dehalogenimonas, Dehalobacter, Desulfitobacterium and Sulfurospirillum, as well as organohalide-respiring members of the Deltaproteobacteria. The book introduces readers to the fascinating biology of organohalide-respiring bacteria, offering a valuable resource for students, engineers and practitioners alike.
Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.
Established almost 30 years ago, Methods in Microbiology is the most prestigious series devoted to techniques and methodology in the field. Now totally revamped, revitalized, with a new format and expanded scope, Methods in Microbiology will continue to provide you with tried and tested, cutting-edge protocols to directly benefit your research. - Focuses on the methods most useful for the microbiologist interested in the way in which bacteria cause disease - Includes section devoted to 'Approaches to characterising pathogenic mechanisms' by Stanley Falkow - Covers safety aspects, detection, identification and speciation - Includes techniques for the study of host interactions and reactions in animals and plants - Describes biochemical and molecular genetic approaches - Essential methods for gene expression and analysis - Covers strategies and problems for disease control
Rapid detection and indication of the microbiological quality of liquids is an emerging topic that has high potential for numerous applications in the fields of environmental monitoring, industrial process control and medical surveillance. Latest technologies allow online and near-real-time quantitative or qualitative microbial measurements with a significantly higher temporal resolution than traditional methods. Such novel developments will significantly enhance quality monitoring of water resources and liquids and have great capability for automation, control and optimization of industrial processes. Therefore, such methods are assumed to have major impacts on scientific research and technical applications in the near future. The book presents cutting edge research on frontiers in microbiological detection from leading experts: Seven chapters containing review articles on emerging and state-of-the-art online and near-real-time methods of microorganism detection and – indication are giving a comprehensive insight into this novel field. A balance between chapters from industry and contributions from academia was aimed for, covering the broad field of microbiological quality of waters and liquids in environmental, industrial and medical systems. This handbook also contains an extensive glossary pointing out and describing relevant terms and definitions. This handbook is the first of its kind and is a timely, comprehensive source of information for researchers and engineers in the areas of biotechnology, environmental sciences, control technology and the process industries.
This book provides all facets of acetic acid bacteria (AAB) and offers the future targets and directions of AAB research. It summarizes the distinctive physiological properties of AAB and the recent progress on AAB study, especially in the following five areas: 1) Molecular phylogeny and genome study of AAB; 2) Ecological features of AAB: interaction with plants, natural fermentation systems, and insects; 3) Physiological features and living strategies of AAB, including rapid oxidation ability, acid resistance, biofilm formation, and genetic instability; 4) Molecular mechanisms of several oxidative fermentations such as acetate fermentation, sorbose fermentation, and ketogluconate fermentation; 5) Recent biotechnological aspects of AAB: biocatalysts, biosensors, biocellulose, and other useful polysaccharides. AAB research has a long history since the discovery of AAB by Louis Pasteur and the identification of AAB by Martinus Beijerinck in the nineteenth century. In the twentieth century, basic research on the taxonomic study of AAB and on biochemical study for the unique oxidative reactions of AAB had progressed as well as the industrial application of AAB not only in vinegar fermentation but also in the bioconversion process for useful chemical or pharmaceutical products. Entering the twenty-first century, AAB research has expanded more, and further progress is expected to be seen in all fields of AAB: classification and ecology, physiology and biochemistry, genetics, and biotechnology of vinegar fermentation and other oxidative fermentations. Far-reaching development in the last decade makes these bacteria more valuable for various industrial uses. Readers can obtain useful and comprehensive information which is exciting in aspects of basic science and provides hints for the better application of these bacteria to various kinds of practical production scenarios as well.