Linear Models in Statistics

Linear Models in Statistics

Author: Alvin C. Rencher

Publisher: John Wiley & Sons

Published: 2008-01-07

Total Pages: 690

ISBN-13: 0470192607

DOWNLOAD EBOOK

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.


Unobserved Variables

Unobserved Variables

Author: David J. Bartholomew

Publisher: Springer Science & Business Media

Published: 2013-09-07

Total Pages: 87

ISBN-13: 3642399126

DOWNLOAD EBOOK

​The classical statistical problem typically involves a probability distribution which depends on a number of unknown parameters. The form of the distribution may be known, partially or completely, and inferences have to be made on the basis of a sample of observations drawn from the distribution; often, but not necessarily, a random sample. This brief deals with problems where some of the sample members are either unobserved or hypothetical, the latter category being introduced as a means of better explaining the data. Sometimes we are interested in these kinds of variable themselves and sometimes in the parameters of the distribution. Many problems that can be cast into this form are treated. These include: missing data, mixtures, latent variables, time series and social measurement problems. Although all can be accommodated within a Bayesian framework, most are best treated from first principles.


Structural Equation Modeling with LISREL

Structural Equation Modeling with LISREL

Author: Leslie A. Hayduk

Publisher: JHU Press

Published: 1987

Total Pages: 430

ISBN-13: 9780801834783

DOWNLOAD EBOOK

Hayduk is equally at ease explaining the simplest and most advanced applications of the program . . . Hayduk has written more than just a solid text for use in advanced graduate courses on statistical modeling. Those with a firm mathematical background who wish to learn about the approach, or those who know a little about the program and want to know more, will find this an excellent reference.


Handbook of Latent Variable and Related Models

Handbook of Latent Variable and Related Models

Author:

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 458

ISBN-13: 0080471269

DOWNLOAD EBOOK

This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.


Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R

Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R

Author: Joseph F. Hair Jr.

Publisher: Springer Nature

Published: 2021-11-03

Total Pages: 208

ISBN-13: 3030805190

DOWNLOAD EBOOK

Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.


Composite-Based Structural Equation Modeling

Composite-Based Structural Equation Modeling

Author: Jörg Henseler

Publisher: Guilford Publications

Published: 2020-12-24

Total Pages: 387

ISBN-13: 1462545610

DOWNLOAD EBOOK

This book presents powerful tools for integrating interrelated composites--such as capabilities, policies, treatments, indices, and systems--into structural equation modeling (SEM). Jörg Henseler introduces the types of research questions that can be addressed with composite-based SEM and explores the differences between composite- and factor-based SEM, variance- and covariance-based SEM, and emergent and latent variables. Using rich illustrations and walked-through data sets, the book covers how to specify, identify, estimate, and assess composite models using partial least squares path modeling, maximum likelihood, and other estimators, as well as how to interpret findings and report the results. Advanced topics include confirmatory composite analysis, mediation analysis, second-order constructs, interaction effects, and importance–performance analysis. Most chapters conclude with software tutorials for ADANCO and the R package cSEM. The companion website includes data files and syntax for the book's examples, along with presentation slides.


Advanced Issues in Partial Least Squares Structural Equation Modeling

Advanced Issues in Partial Least Squares Structural Equation Modeling

Author: Joseph F. Hair, Jr.

Publisher: SAGE Publications

Published: 2017-04-25

Total Pages: 169

ISBN-13: 1483377415

DOWNLOAD EBOOK

Written as an extension of A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Second Edition, this easy-to-understand, practical guide covers advanced content on PLS-SEM to help students and researchers apply techniques to research problems and accurately interpret results. The book provides a brief overview of basic concepts before moving to the more advanced material. Offering extensive examples on SmartPLS 3 software and accompanied by free downloadable data sets, the book emphasizes that any advanced PLS-SEM approach should be carefully applied to ensure that it fits the appropriate research context and the data characteristics that underpin the research.


Applied Structural Equation Modeling using AMOS

Applied Structural Equation Modeling using AMOS

Author: Joel Collier

Publisher: Routledge

Published: 2020-05-25

Total Pages: 367

ISBN-13: 1000066312

DOWNLOAD EBOOK

This is an essential how-to guide on the application of structural equation modeling (SEM) techniques with the AMOS software, focusing on the practical applications of both simple and advanced topics. Written in an easy-to-understand conversational style, the book covers everything from data collection and screening to confirmatory factor analysis, structural model analysis, mediation, moderation, and more advanced topics such as mixture modeling, censored date, and non-recursive models. Through step-by-step instructions, screen shots, and suggested guidelines for reporting, Collier cuts through abstract definitional perspectives to give insight on how to actually run analysis. Unlike other SEM books, the examples used will often start in SPSS and then transition to AMOS so that the reader can have full confidence in running the analysis from beginning to end. Best practices are also included on topics like how to determine if your SEM model is formative or reflective, making it not just an explanation of SEM topics, but a guide for researchers on how to develop a strong methodology while studying their respective phenomenon of interest. With a focus on practical applications of both basic and advanced topics, and with detailed work-through examples throughout, this book is ideal for experienced researchers and beginners across the behavioral and social sciences.


Palgrave Handbook of Econometrics

Palgrave Handbook of Econometrics

Author: Terence C. Mills

Publisher: Springer

Published: 2009-06-25

Total Pages: 1406

ISBN-13: 0230244408

DOWNLOAD EBOOK

Following theseminal Palgrave Handbook of Econometrics: Volume I , this second volume brings together the finestacademicsworking in econometrics today andexploresapplied econometrics, containing contributions onsubjects includinggrowth/development econometrics and applied econometrics and computing.


Structural Equation Models in the Social Sciences

Structural Equation Models in the Social Sciences

Author: Social Science Research Council (U.S.)

Publisher: New York : Seminar Press

Published: 1973

Total Pages: 378

ISBN-13:

DOWNLOAD EBOOK

Monographic compilation of conference papers on methodology for the use of mathematical models in the social sciences - presents interdisciplinary research applications of structural equation (causal) models, and includes recent techniques of mathematical analysis and statistical analysis, etc. References and statistical tables. Conference held in madison 1970 November 12 to 16.