The Large Hadron Collider (LHC), located at CERN, Geneva, Switzerland, is the world's largest and highest energy and highest intensity particle accelerator. Here is a timely book with several perspectives on the hoped-for discoveries from the LHC.This book provides an overview on the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek), and presumably some future Nobel Laureates, plus top younger theorists and experimenters. With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields.
The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques, which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data, and a concise discussion of numerical resummation through parton showers, which form the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions, which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC, and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.
This book presents two analyses, the first of which involves the search for a new heavy charged gauge boson, a so-called W' boson. This new gauge boson is predicted by some theories extending the Standard Model gauge group to solve some of its conceptual problems. Decays of the W' boson in final states with a lepton (l± = e± , μ±) and the corresponding (anti-)neutrino are considered. Data collected by the ATLAS experiment in 2015 at a center of mass energy of √s =13 TeV is used for the analysis. In turn, the second analysis presents a measurement of the double-differential cross section of the process pp->Z/gamma^* + X -> l^+l^- + X, including a gamma gamma induced contribution, at a center of mass energy of sqrt{s} = 8 TeV. The measurement is performed in an invariant mass region of 116 GeV to 1500 GeV as a function of invariant mass and absolute rapidity of the l^+l^-- pair, and as a function of invariant mass and pseudorapidity separation of the l^+l^-- pair. The data analyzed was recorded by the ATLAS experiment in 2012 and corresponds to an integrated luminosity of 20.3/fb. It is expected that the measured cross sections are sensitive to the PDFs at very high values of the Bjorken-x scaling variable, and to the photon structure of the proton.
This thesis reports on the first studies of Standard Model photon production at the Large Hadron Collider (LHC) using the ATLAS detector. Standard Model photon production is a large background in the search for Higgs bosons decaying into photon pairs, and is thus critical to understand. The thesis explains the techniques used to reconstruct and identify photon candidates using the ATLAS detector, and describes a measurement of the production cross section for isolated prompt photons. The thesis also describes a search for the Higgs boson in which the analysis techniques used in the measurement are exploited to reduce and estimate non-prompt backgrounds in diphoton events.