The 28th conference from the Rochester series was the major high energy physics conference in 1996. Volume one contains short reports on new theoretical and experimental results. Volume two consists of the review talks presented in the plenary sessions.
Proceedings of the Third International Conference on B Physics and CP Violation, held in Taipei, Taiwan, December 3-7, 1999. The main focus of the conference was to discuss the state of the art and future prospects of the field, at a high technical level. The fifth conference is to be held in May 2002 in Philadelphia. The Fourth took place in Central Japan in February 2001.zation.
High Energy Physics 99 contains the 18 invited plenary presentations and 250 contributions to parallel sessions presented at the International Europhysics Conference on High Energy Physics. The book provides a comprehensive survey of the latest developments in high energy physics. Topics discussed include hard high energy, structure functions, soft interactions, heavy flavor, the standard model, hadron spectroscopy, neutrino masses, particle astrophysics, field theory, and detector development.
The Standard Model (SM) of particle physics has withstood thus far every attempt by experimentalists to show that it does not describe data. We discuss the SM in some detail, focusing on the mechanism of fermion mixing, which represents one of its most intriguing aspects. We discuss how this mechanism can be tested in b-quark decays, and how b decays can be used to extract information on physics beyond the SM. We review experimental techniques in b physics, focusing on recent results and highlighting future prospects. Particular attention is devoted to recent results from b decays into a hadron, a lepton and an anti-lepton, that show discrepancies with the SM predictions — the so-called B-physics anomalies — whose statistical significance has been increasing steadily. We discuss these experiments in a detailed manner, and also provide theoretical interpretation of these results in terms of physics beyond the SM.
CP violation was first observed in 1964, but only in 1999 did we gain much greater experimental insight. Direct CP violation finally appeared in the form of ε′/ε in the K system. Indirect CP violation in B → J/Ψ Ks decay, the raison d'être for construction of e+e- B factories, was first sniffed out at the proton-antiproton collider. The asymmetric B factories — BABAR at SLAC and BELLE at KEK — were completed, while the symmetric B factory at Cornell was upgraded to CLEO-III. It seems that everyone is positioning himself for the great competition on “B Physics and CP Violation”, racing to unravel the Kobayashi-Maskawa matrix, especially the size and origin of CP phases. The change of millennium provides a dramatic backdrop.To have intensive discussions at the technical level, to create broader interest in the subject, and to maximize interaction between experimenters and theorists, this book starts with the status of B factories: accelerator, detector and physics analysis. Following an overview of B physics and the CKM matrix, it delves into the details of lifetime, spectroscopy and decays, with even more specialized discussions on rare decays, direct and indirect CP violation, factorization and final state interactions, determination of unitarity phases, etc. Topics on ε′/ε, rare K decay, charm and hyperon systems, and various T, CP and CPT tests are also discussed at length. The book closes with the outlook for hadron machines and the prospects for new physics. A special feature is that there are two summary talks, one on experiment and the other on theory. The book is further augmented by two dozen excellent contributed talks.
This proceedings contains the talks delivered at the plenary and parallel sessions. Topics covered include e⁺e⁻ Physics at Z0, String Theory and Theory of Extended Objects, High Energy pp Physics, Non-Accelerator Particle Physics, Conformal Field Theory, e⁺e⁻ Physics below Z⁰, Structure Functions and Deep Inelastic Scattering, Neutrino Physics, Recent Developments in 2-Dimensional Gravity, Lattice Gauge Theory and Computer Simulations, CP Violation , Accelerator Physics, Cosmology and Particle Physics, Interface Between Particle and Condensed Matter Physics, Detector R&D, and Astroparticle Physics.
The first precision measurements on CP violation in the B system are reported. Both the BELLE and the BABAR collaboration presented, among others, results for sin 2ß with much improved accuracy. Results from the Sudbury Neutrino Observatory, SNO, also deserve to be mentioned. The convincing evidence of solar neutrino oscillations had been presented by SNO prior to the conference; a full presentation was given at the conference. An incredibly precise measurement of the anomalous magnetic moment of the muon is reported, a fresh result from the Brookhaven National Laboratory. Apart from these distinct physics highlights, there are also the first results from the new Tevatron run and from the relativistic heavy ion collider RHIC. Theorists write of our ever better understanding of the Standard Model and of what might lie beyond. Risky as it is to highlight only a couple of exciting subjects, it is merely meantto whet the appetite for further reading.
The physics of heavy flavors is a very active area of research in experimental and theoretical high energy physics. A number of heavy flavor experiments at new or upgraded accelerators are just coming on line to address some of the most fundamental questions of particle physics, e.g. matter-anti-matter asymmetry (CP violation).The Seventh International Symposium on Heavy Flavor Physics focused primarily on the physics of bottom and charmed quarks, but there were also sessions on the top quark and the tau lepton. It presented a great opportunity to take stock of the field on the eve of the new era in heavy flavor physics which will be opened up by the next generation of experiments.