A Large-Scale Modeling Study of the California Current System

A Large-Scale Modeling Study of the California Current System

Author: James T. Monroe

Publisher:

Published: 1997-12-01

Total Pages: 148

ISBN-13: 9781423563853

DOWNLOAD EBOOK

A high resolution, multi-level, primitive equation ocean model is used to investigate the combined role of wind forcing, thermohaline gradients, and coastline irregularities on the formation of currents, meanders, eddies, and filaments in the California Current System (CCS) from 22.5 deg N to 47.5 deg N. An additional objective is to further characterize the formation of the Davidson Current, seasonal variability off Baja California, and the meandering jet south of Cape Blanco. The model includes a realistic coastline and is forced from rest using climatological winds, temperatures, and salinities. The migration pattern of the North Pacific Subtropical High plays a significant role in the generation and evolution of CCS structures. In particular, variations in wind stress induce flow instabilities which are enhanced by coastline perturbations. An inshore train of cyclonic eddies, combined with a poleward undercurrent of varying seasonal depths, forms a discontinuous countercurrent called the Davidson Current north of Point Conception. Off Baja, the equator-ward surface jet strengthens (weakens) during spring and summer (fall and winter). Model results also substantiate Point Eugenia as a persistent cyclonic eddy generation area. The model equator-ward jet south of Cape Blanco is a relatively continuous feature, meandering offshore and onshore, and divides coastally influenced water from water of offshore origin.


Modeling the Response of the California Current System to Global Greenhouse Warming. Final Report to the National Institute for Global Environmental Change (August 1993).

Modeling the Response of the California Current System to Global Greenhouse Warming. Final Report to the National Institute for Global Environmental Change (August 1993).

Author:

Publisher:

Published: 1993

Total Pages: 7

ISBN-13:

DOWNLOAD EBOOK

This is the final report for the project ''Modeling the Response of the California Current System to Global Greenhouse Warming, '' supported 1990 and 1991 by NIGEC. The scientists involved are Dr. Richard C.J. Somerville and Alejandro Paries-Sierra of Scripps Institution of Oceanography, UCSD. A copy of papers submitted to the Journal of Physical Oceanography, and Geofisica Internacional that were supported in part or whole by WEST-GEC, as well as a summary of a talk delivered at the XX General Assembly of the IUGG, Vienna (1991) are appended to this report. The objective of the research was to improve the understanding of the response of the California Current system to the large-scale anomalous forcing thought to be associated with greenhouse warming. The authors viewed this as a necessary initial step in the study of the California climate response to global change.


Mesoscale to Large-scale Variability in the California Current System from High-resolution Observations

Mesoscale to Large-scale Variability in the California Current System from High-resolution Observations

Author: Alice Sonya Ren

Publisher:

Published: 2022

Total Pages: 138

ISBN-13:

DOWNLOAD EBOOK

Our understanding of the ocean historically has moved forward in parallel with our ability to make observations. In the thesis, high-resolution observations of the California Current System made by Spray underwater gliders are used to discuss extreme events, eddy across-shore transport, and the annual cycle of dissolved oxygen in the upper ocean. The time scales covered in the thesis include annual to interannual changes while the spatial scales are mesoscale and larger. The availability of high-resolution ocean glider data for over 13 years provides the backbone to conduct analyses over these time and spatial scales. The thesis starts by examining temperature and salinity extremes from 2014-2019 in the California Current System and its source waters. The 2014-2019 period was anomalously warm. In addition, a salinity anomaly from 2017-2019 in the California Current System was found to have formed in the North Pacific Subtropical Gyre in 2015 and subsequently advected into the source waters of the California Current. Next, the thesis examines the offshore propagation of subthermocline eddies from the coast. Subthermocline eddies are observed to propagate at near the local first baroclinic Rossby wave speed. It is estimated that the subthermocline eddies are important to the salt budget in the California Current System and are difficult to track with surface observations alone. The thesis next discusses dissolved oxygen observations collected from 2017 to 2020. First, the thesis considers the procedure to correct for drift in the optical sensors used to make dissolved oxygen observations. A model is fit to changes in the gain correction coefficient over time and predicts the drift for 5 years after sensor calibration. Second, the thesis describes the annual cycle of dissolved oxygen in the upper 500 m of the central and southern California Current System. A subsurface dissolved oxygen maximum is described in the oligotrophic region on the offshore edge of the California Current System. During seasonal coastal upwelling, heave of isopycnals is the primary mechanism that deoxygenates the water column, while mixing and biological sources and sinks also cause changes. Evidence of ventilation is found along sloping isopycnals which oxygenates the ocean above 300 m. The collection of work in the thesis is relevant to extreme climate events and climate change in the oceans, including impacts to the biological environment. The thesis also touches on basic research questions related to geostrophic turbulence. The discoveries in the thesis are made possible by the high-resolution ocean data collected by autonomous Spray gliders used together in a network to create sustained observations of a regional ocean.


Coastal Altimetry

Coastal Altimetry

Author: Stefano Vignudelli

Publisher: Elsevier

Published: 2023-06-27

Total Pages: 248

ISBN-13: 0323985718

DOWNLOAD EBOOK

Coastal Altimetry: Selected Case Studies from Asian Shelf Seas provides information on developments over the past decade in the processing of remotely sensed altimetry in coastal areas, with an overview of expected errors and where they stem from, along with remaining gaps in processing. Challenges covered include the retracking of the altimetric signal to account for land contamination, tropospheric water corrections, and tidal model improvements, along with the pros and cons of widely available products. Additional chapters provide recent research in the regional seas of Asia and cover variability, dynamics, predictability and prediction, impacts of extreme events, effects to ecosystems, and more. This book offers readers a dataset that can illuminate our understanding of the propagation of planetary boundary waves that have a significant sea level signal in near coastal regions. As such, researchers and students who have a foundation in satellite altimetry and want to know the latest development of open ocean and coastal satellite altimetry, especially in Asian coastal regions, will benefit from this book. - Presents the advancement of coastal altimetry technologies from various dedicated experts - Includes case studies throughout to give real-life examples that can be implemented globally - Provides chapters that include summaries of key points and an outlook to the future


Report

Report

Author: United States. National Bureau of Standards

Publisher:

Published: 1963

Total Pages: 952

ISBN-13:

DOWNLOAD EBOOK