This book explores the purposes, methodologies, modelling techniques and weaknesses in energy forecasting. It provides a rare appraisal of what is generally known as the ‘end use sector’ approach to global demand forecasting. It exposes the fallibilities that are hidden in the seductive power point presentations of forecasters and the false sense of accuracy bestowed upon them. It nevertheless stresses that forecasting remains crucial and of value to the industry. By raising awareness of the forecasting risks and the often ‘smoke and mirrors’ nature of the exercise as well as offering commentary on how the process and use of forecasts could be improved, although not necessarily the accuracy, this book is must-read for those in government, corporate planning and financing sectors of the energy industry who rely on forecasts to make policy, investment and trading decisions.
This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.
Succinct and understandable, this book is a step-by-step guide to the mathematics and construction of electrical load forecasting models. Written by one of the world’s foremost experts on the subject, Electrical Load Forecasting provides a brief discussion of algorithms, their advantages and disadvantages and when they are best utilized. The book begins with a good description of the basic theory and models needed to truly understand how the models are prepared so that they are not just blindly plugging and chugging numbers. This is followed by a clear and rigorous exposition of the statistical techniques and algorithms such as regression, neural networks, fuzzy logic, and expert systems. The book is also supported by an online computer program that allows readers to construct, validate, and run short and long term models. Step-by-step guide to model construction Construct, verify, and run short and long term models Accurately evaluate load shape and pricing Creat regional specific electrical load models
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development.
This addition to the ISOR series addresses the analytics of the operations of electric energy systems with increasing penetration of stochastic renewable production facilities, such as wind- and solar-based generation units. As stochastic renewable production units become ubiquitous throughout electric energy systems, an increasing level of flexible backup provided by non-stochastic units and other system agents is needed if supply security and quality are to be maintained. Within the context above, this book provides up-to-date analytical tools to address challenging operational problems such as: • The modeling and forecasting of stochastic renewable power production. • The characterization of the impact of renewable production on market outcomes. • The clearing of electricity markets with high penetration of stochastic renewable units. • The development of mechanisms to counteract the variability and unpredictability of stochastic renewable units so that supply security is not at risk. • The trading of the electric energy produced by stochastic renewable producers. • The association of a number of electricity production facilities, stochastic and others, to increase their competitive edge in the electricity market. • The development of procedures to enable demand response and to facilitate the integration of stochastic renewable units. This book is written in a modular and tutorial manner and includes many illustrative examples to facilitate its comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, applied mathematics and economics. Practitioners in the electric energy sector will benefit as well from the concepts and techniques explained in this book.
Solar Energy Forecasting and Resource Assessment is a vital text for solar energy professionals, addressing a critical gap in the core literature of the field. As major barriers to solar energy implementation, such as materials cost and low conversion efficiency, continue to fall, issues of intermittency and reliability have come to the fore. Scrutiny from solar project developers and their financiers on the accuracy of long-term resource projections and grid operators' concerns about variable short-term power generation have made the field of solar forecasting and resource assessment pivotally important. This volume provides an authoritative voice on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications and emphasizing the latest technological developments driving this discipline forward. - The only reference dedicated to forecasting and assessing solar resources enables a complete understanding of the state of the art from the world's most renowned experts. - Demonstrates how to derive reliable data on solar resource availability and variability at specific locations to support accurate prediction of solar plant performance and attendant financial analysis. - Provides cutting-edge information on recent advances in solar forecasting through monitoring, satellite and ground remote sensing, and numerical weather prediction.
Published as an Open Access book available on Science Direct, IEA Wind Recommended Practices for the Implementation of Renewable Energy Forecasting Solutions translates decades of academic knowledge and standard requirements into applicable procedures and decision support tools for the energy industry. Designed specifically for practitioners in the energy industry, readers will find the tools to maximize the value of renewable energy forecast information in operational decision-making applications and significantly reduce the costs of integrating large amounts of wind and solar generation assets into grid systems through more efficient management of the renewable generation variability. Authored by a group of international experts as part of the IEA Wind Task 36 (Wind Energy Forecasting), the book addresses the issue that many current operational forecast solutions are not properly optimized for their intended applications. It provides detailed guidelines and recommended practices on forecast solution selection processes, designing and executing forecasting benchmarks and trials, forecast solution evaluation, verification, and validation, and meteorological and power data requirements for real-time forecasting applications. In addition, the guidelines integrate probabilistic forecasting, integrate wind and solar forecasting, offer improved IT data exchange and data format standards, and have a dedicated section to dealing with the requirements for SCADA and meteorological measurements. A unique and comprehensive reference, IEA Wind Recommended Practices for the Implementation of Renewable Energy Forecasting Solutions is an essential guide for all practitioners involved in wind and solar energy generation forecasting from forecast vendors to end-users of renewable forecasting solutions. - Brings together the decades-long expertise of authors from a range of backgrounds, including universities and government laboratories, commercial forecasters, and operational forecast end-users into a single comprehensive set of practices - Addresses all areas of wind power forecasting, including forecasting methods, measurement selection, setup and data quality control, and the evaluation of forecasting processes related to renewable energy forecasting - Provides purpose-built decision-support tools, process diagrams, and code examples to help readers visualize and navigate the book and support decision-making
This book is written for all technologists and engineers. To those unfamiliar with forecasting it may appear a somewhat esoteric activity with little relevance to the everyday technical concerns of the reader. This is not so. The aim of this book is to show how forecasting can improve the quality of technical decision making. Furthermore, this can be accomplished without the use of highly sophisticated techniques which can only be applied by specialists. The approaches described in this book can be easily understood and used by all its readers.