A Guide to Classical and Modern Model Theory

A Guide to Classical and Modern Model Theory

Author: Annalisa Marcja

Publisher: Springer Science & Business Media

Published: 2012-09-10

Total Pages: 377

ISBN-13: 9400708122

DOWNLOAD EBOOK

This volume is easily accessible to young people and mathematicians unfamiliar with logic. It gives a terse historical picture of Model Theory and introduces the latest developments in the area. It further provides 'hands-on' proofs of elimination of quantifiers, elimination of imaginaries and other relevant matters. The book is for trainees and professional model theorists, and mathematicians working in Algebra and Geometry.


Modern Classical Homotopy Theory

Modern Classical Homotopy Theory

Author: Jeffrey Strom

Publisher: American Mathematical Soc.

Published: 2011-10-19

Total Pages: 862

ISBN-13: 0821852868

DOWNLOAD EBOOK

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.


A Course in Model Theory

A Course in Model Theory

Author: Bruno Poizat

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 1441986227

DOWNLOAD EBOOK

Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.


Classical and New Paradigms of Computation and their Complexity Hierarchies

Classical and New Paradigms of Computation and their Complexity Hierarchies

Author: Benedikt Löwe

Publisher: Springer Science & Business Media

Published: 2007-11-04

Total Pages: 266

ISBN-13: 1402027761

DOWNLOAD EBOOK

The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.


Classical and Modern Social Theory

Classical and Modern Social Theory

Author: Heine Anderson

Publisher: Wiley-Blackwell

Published: 2000-09-13

Total Pages: 540

ISBN-13: 9780631212881

DOWNLOAD EBOOK

Classical and Modern Social Theory is comprehensive introduction to the field, covering a wide historical range of thinkers, from the classical to the postmodernist, as well as key themes in social theory and a guide to the major debates. Designed for students with little or no background in social theory, this single volume covering both classic and contemporary theory introduces the basic concepts at the center of social theory in accessible language and provides readers with a useful reference source to the field.


Handbook of Practical Logic and Automated Reasoning

Handbook of Practical Logic and Automated Reasoning

Author: John Harrison

Publisher: Cambridge University Press

Published: 2009-03-12

Total Pages: 683

ISBN-13: 113947927X

DOWNLOAD EBOOK

The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.


Trends in Logic

Trends in Logic

Author: Vincent F. Hendricks

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 387

ISBN-13: 9401735980

DOWNLOAD EBOOK

In 1953, exactly 50 years ago to this day, the first volume of Studia Logica appeared under the auspices of The Philosophical Committee of The Polish Academy of Sciences. Now, five decades later the present volume is dedicated to a celebration of this 50th Anniversary of Studia Logica. The volume features a series of papers by distinguished scholars reflecting both the aim and scope of this journal for symbolic logic.


Anaphora and Type Logical Grammar

Anaphora and Type Logical Grammar

Author: Gerhard Jäger

Publisher: Springer Science & Business Media

Published: 2005-12-08

Total Pages: 301

ISBN-13: 1402039050

DOWNLOAD EBOOK

Type Logical Grammar is a framework that emerged from the synthesis of two traditions: Categorial Grammar from formal linguistics and substructural logics from logic. Grammatical composition is conceived as resource conscious logical deduction. Such a grammar is necessarily surface oriented and lexicalistic. The Curry-Howard correspondence supplies an elegant compositional mapping from syntax to semantics. Anaphora does not seem to fit well into this framework. In type logical deductions, each resource is used exactly once. Anaphora, however, is a phenomenon where semantic resources are used more than once. Generally admitting the multiple use of lexical resources is not possible because it would lead to empirical inadequacy and computational intractability. This book develops a hybrid architecture that allows to incorporate anaphora resolution into grammatical deduction while avoiding these consequences. To this end, the grammar logic is enriched with a connective that specifically deals with anaphora. After giving a self-contained introduction into Type Logical Grammar in general, the book discusses the formal properties of this connective. In the sequel, Jäger applies this machinery to numerous linguistic phenomena pertaining to the interaction of pronominal anaphora, VP ellipsis and quantification. In the final chapter, the framework is extended to indefiniteness, specificity and sluicing.


Philosophy of Mathematics

Philosophy of Mathematics

Author: Thomas Bedürftig

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-10-26

Total Pages: 514

ISBN-13: 3110470772

DOWNLOAD EBOOK

The present book is an introduction to the philosophy of mathematics. It asks philosophical questions concerning fundamental concepts, constructions and methods - this is done from the standpoint of mathematical research and teaching. It looks for answers both in mathematics and in the philosophy of mathematics from their beginnings till today. The reference point of the considerations is the introducing of the reals in the 19th century that marked an epochal turn in the foundations of mathematics. In the book problems connected with the concept of a number, with the infinity, the continuum and the infinitely small, with the applicability of mathematics as well as with sets, logic, provability and truth and with the axiomatic approach to mathematics are considered. In Chapter 6 the meaning of infinitesimals to mathematics and to the elements of analysis is presented. The authors of the present book are mathematicians. Their aim is to introduce mathematicians and teachers of mathematics as well as students into the philosophy of mathematics. The book is suitable also for professional philosophers as well as for students of philosophy, just because it approaches philosophy from the side of mathematics. The knowledge of mathematics needed to understand the text is elementary. Reports on historical conceptions. Thinking about today‘s mathematical doing and thinking. Recent developments. Based on the third, revised German edition. For mathematicians - students, teachers, researchers and lecturers - and readersinterested in mathematics and philosophy. Contents On the way to the reals On the history of the philosophy of mathematics On fundamental questions of the philosophy of mathematics Sets and set theories Axiomatic approach and logic Thinking and calculating infinitesimally – First nonstandard steps Retrospection