Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
Most texts on experimental design fall into one of two distinct categories. There are theoretical works with few applications and minimal discussion on design, and there are methods books with limited or no discussion of the underlying theory. Furthermore, most of these tend to either treat the analysis of each design separately with little attempt to unify procedures, or they will integrate the analysis for the designs into one general technique. A First Course in the Design of Experiments: A Linear Models Approach stands apart. It presents theory and methods, emphasizes both the design selection for an experiment and the analysis of data, and integrates the analysis for the various designs with the general theory for linear models. The authors begin with a general introduction then lead students through the theoretical results, the various design models, and the analytical concepts that will enable them to analyze virtually any design. Rife with examples and exercises, the text also encourages using computers to analyze data. The authors use the SAS software package throughout the book, but also demonstrate how any regression program can be used for analysis. With its balanced presentation of theory, methods, and applications and its highly readable style, A First Course in the Design of Experiments proves ideal as a text for a beginning graduate or upper-level undergraduate course in the design and analysis of experiments.
This carefully edited collection synthesizes the state of the art in the theory and applications of designed experiments and their analyses. It provides a detailed overview of the tools required for the optimal design of experiments and their analyses. The handbook covers many recent advances in the field, including designs for nonlinear models and algorithms applicable to a wide variety of design problems. It also explores the extensive use of experimental designs in marketing, the pharmaceutical industry, engineering and other areas.
This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
This user-friendly new edition reflects a modern and accessible approach to experimental design and analysis Design and Analysis of Experiments, Volume 1, Second Edition provides a general introduction to the philosophy, theory, and practice of designing scientific comparative experiments and also details the intricacies that are often encountered throughout the design and analysis processes. With the addition of extensive numerical examples and expanded treatment of key concepts, this book further addresses the needs of practitioners and successfully provides a solid understanding of the relationship between the quality of experimental design and the validity of conclusions. This Second Edition continues to provide the theoretical basis of the principles of experimental design in conjunction with the statistical framework within which to apply the fundamental concepts. The difference between experimental studies and observational studies is addressed, along with a discussion of the various components of experimental design: the error-control design, the treatment design, and the observation design. A series of error-control designs are presented based on fundamental design principles, such as randomization, local control (blocking), the Latin square principle, the split-unit principle, and the notion of factorial treatment structure. This book also emphasizes the practical aspects of designing and analyzing experiments and features: Increased coverage of the practical aspects of designing and analyzing experiments, complete with the steps needed to plan and construct an experiment A case study that explores the various types of interaction between both treatment and blocking factors, and numerical and graphical techniques are provided to analyze and interpret these interactions Discussion of the important distinctions between two types of blocking factors and their role in the process of drawing statistical inferences from an experiment A new chapter devoted entirely to repeated measures, highlighting its relationship to split-plot and split-block designs Numerical examples using SAS® to illustrate the analyses of data from various designs and to construct factorial designs that relate the results to the theoretical derivations Design and Analysis of Experiments, Volume 1, Second Edition is an ideal textbook for first-year graduate courses in experimental design and also serves as a practical, hands-on reference for statisticians and researchers across a wide array of subject areas, including biological sciences, engineering, medicine, pharmacology, psychology, and business.
Design and Analysis of Experiments with R presents a unified treatment of experimental designs and design concepts commonly used in practice. It connects the objectives of research to the type of experimental design required, describes the process of creating the design and collecting the data, shows how to perform the proper analysis of the data,
Featuring engaging examples from diverse disciplines, this book explains how to use modern approaches to quasi-experimentation to derive credible estimates of treatment effects under the demanding constraints of field settings. Foremost expert Charles S. Reichardt provides an in-depth examination of the design and statistical analysis of pretest-posttest, nonequivalent groups, regression discontinuity, and interrupted time-series designs. He details their relative strengths and weaknesses and offers practical advice about their use. Reichardt compares quasi-experiments to randomized experiments and discusses when and why the former might be a better choice. Modern moethods for elaborating a research design to remove bias from estimates of treatment effects are described, as are tactics for dealing with missing data and noncompliance with treatment assignment. Throughout, mathematical equations are translated into words to enhance accessibility.
The design of experiments holds a central place in statistics. The aim of this book is to present in a readily accessible form certain theoretical results of this vast field. This is intended as a textbook for a one-semester or two-quarter course for undergraduate seniors or first-year graduate students, or as a supplementary resource. Basic knowledge of algebra, calculus and statistical theory is required to master the techniques presented in this book.To help the reader, basic statistical tools that are needed in the book are given in a separate chapter. Mathematical results from Modern Algebra which are needed for the construction of designs are also given. Wherever possible the proofs of the theoretical results are provided.
Design of Experiments: A Modern Approach introduces readers to planning and conducting experiments, analyzing the resulting data, and obtaining valid and objective conclusions. This innovative textbook uses design optimization as its design construction approach, focusing on practical experiments in engineering, science, and business rather than orthogonal designs and extensive analysis. Requiring only first-course knowledge of statistics and familiarity with matrix algebra, student-friendly chapters cover the design process for a range of various types of experiments. The text follows a traditional outline for a design of experiments course, beginning with an introduction to the topic, historical notes, a review of fundamental statistics concepts, and a systematic process for designing and conducting experiments. Subsequent chapters cover simple comparative experiments, variance analysis, two-factor factorial experiments, randomized complete block design, response surface methodology, designs for nonlinear models, and more. Readers gain a solid understanding of the role of experimentation in technology commercialization and product realization activities—including new product design, manufacturing process development, and process improvement—as well as many applications of designed experiments in other areas such as marketing, service operations, e-commerce, and general business operations.