History of Analytic Geometry

History of Analytic Geometry

Author: Carl B. Boyer

Publisher: Courier Corporation

Published: 2012-06-28

Total Pages: 306

ISBN-13: 0486154513

DOWNLOAD EBOOK

This study presents the concepts and contributions from before the Alexandrian Age through to Fermat and Descartes, and on through Newton and Euler to the "Golden Age," from 1789 to 1850. 1956 edition. Analytical bibliography. Index.


A Brief Course In Analytic Geometry

A Brief Course In Analytic Geometry

Author: N Yefimov

Publisher: Legare Street Press

Published: 2022-10-27

Total Pages: 0

ISBN-13: 9781017743883

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Lectures on Analytic and Projective Geometry

Lectures on Analytic and Projective Geometry

Author: Dirk J. Struik

Publisher: Courier Corporation

Published: 2011-10-24

Total Pages: 306

ISBN-13: 0486485951

DOWNLOAD EBOOK

This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.


Solid Analytic Geometry

Solid Analytic Geometry

Author: Abraham Adrian Albert

Publisher: Courier Dover Publications

Published: 2016-07-19

Total Pages: 178

ISBN-13: 0486814688

DOWNLOAD EBOOK

Concise text covers basics of solid analytic geometry and provides ample material for a one-semester course. Additional chapters on spherical coordinates and projective geometry suitable for longer courses or supplementary study. 1949 edition.


Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry

Author: Dror Varolin

Publisher: American Mathematical Soc.

Published: 2011-08-10

Total Pages: 258

ISBN-13: 0821853694

DOWNLOAD EBOOK

This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch


Algebraic and Analytic Geometry

Algebraic and Analytic Geometry

Author: Amnon Neeman

Publisher: Cambridge University Press

Published: 2007-09-13

Total Pages: 433

ISBN-13: 0521709830

DOWNLOAD EBOOK

Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.


Analytic Geometry

Analytic Geometry

Author: Douglas F. Riddle

Publisher: Arden Shakespeare

Published: 1982

Total Pages: 434

ISBN-13:

DOWNLOAD EBOOK

This respected text makes extensive use of applications and features items such as historical vignettes to make the material useful and interesting. The text is written for the one-term analytic geometry course, often taught in sequence with college algebra, and is designed for students with a reasonably sound background in algebra, geometry, and trigonometry.


Local Analytic Geometry

Local Analytic Geometry

Author: Theo de Jong

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 395

ISBN-13: 3322901599

DOWNLOAD EBOOK

Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen für konvergente Potenzreihenringe, Approximationssätze, Grauerts Satz über die Existenz der versellen Deformation. Das Buch richtet sich an Studenten höherer Semester, Doktoranden und Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an den Universitäten in Kaiserslautern und Saarbrücken entstanden.


Geometri?eskie svojstva krivyh vtorogo porâdka

Geometri?eskie svojstva krivyh vtorogo porâdka

Author: Arseny V. Akopyan

Publisher: American Mathematical Soc.

Published:

Total Pages: 148

ISBN-13: 9780821884324

DOWNLOAD EBOOK

"Geometry Of Conics deals with the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, this book moves to less trivial results, both classical and contemporary. It demonstrates the advantage of purely geometric methods of studying conics."--Publisher's website.