A Dynamic Model of the General Theory of Electric Machines
Author: A. V. Gaponov-Grekhov
Publisher:
Published: 1953
Total Pages: 8
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: A. V. Gaponov-Grekhov
Publisher:
Published: 1953
Total Pages: 8
ISBN-13:
DOWNLOAD EBOOKAuthor: Mrittunjay Bhattacharyya
Publisher: PHI Learning Pvt. Ltd.
Published: 2016-05-12
Total Pages: 517
ISBN-13: 8120351770
DOWNLOAD EBOOKThe book is designed to cover the study of electro-mechanical energy converters in all relevant aspects, and also to acquaint oneself of a single treatment for all types of machines for modelling and analysis. The book starts with the general concepts of energy conversion and basic circuit elements, followed by a review of the mathematical tools. The discussion goes on to introduce the concepts of energy storage in magnetic field, electrical circuits used in rotary electro-mechanical devices and three-phase systems with their transformation. The book, further, makes the reader familiar with the modern aspects of analysis of machines like transient and dynamic operation of machines, asymmetrical and unbalanced operation of poly-phase induction machines, and finally gives a brief exposure to space phasor concepts.
Author: Valeria Hrabovcova
Publisher: BoD – Books on Demand
Published: 2020-05-20
Total Pages: 202
ISBN-13: 183880207X
DOWNLOAD EBOOKThis book is devoted to students, PhD students, postgraduates of electrical engineering, researchers, and scientists dealing with the analysis, design, and optimization of electrical machine properties. The purpose is to present methods used for the analysis of transients and steady-state conditions. In three chapters the following methods are presented: (1) a method in which the parameters (resistances and inductances) are calculated on the basis of geometrical dimensions and material properties made in the design process, (2) a method of general theory of electrical machines, in which the transients are investigated in two perpendicular axes, and (3) FEM, which is a mathematical method applied to electrical machines to investigate many of their properties.
Author: Marius Rosu
Publisher: John Wiley & Sons
Published: 2017-12-18
Total Pages: 312
ISBN-13: 1119103444
DOWNLOAD EBOOKPresents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.
Author: John Chiasson
Publisher: John Wiley & Sons
Published: 2005-05-27
Total Pages: 734
ISBN-13: 0471722340
DOWNLOAD EBOOKModeling and High Performance Control of Electric Machines introduces you to both the modeling and control of electric machines. The direct current (DC) machine and the alternating current (AC) machines (induction, PM synchronous, and BLDC) are all covered in detail. The author emphasizes control techniques used for high-performance applications, specifically ones that require both rapid and precise control of position, speed, or torque. You'll discover how to derive mathematical models of the machines, and how the resulting models can be used to design control algorithms that achieve high performance. Graduate students studying power and control as well as practicing engineers in industry will find this a highly readable text on the operation, modeling, and control of electric machines. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. Instructor Support materials are also available. Email [email protected]
Author: Dieter Gerling
Publisher: Springer Science & Business Media
Published: 2014-09-17
Total Pages: 479
ISBN-13: 3642175848
DOWNLOAD EBOOKElectrical Machines and Drives play a vital role in industry with an ever increasing importance. This fact necessitates the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical deduction of the necessary formulae to calculate machines and drives, and to the discussion of simplifications (if applied) with the associated limits. So the book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked. This book addresses graduate students, researchers and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed, but compact mathematical deduction, together with a distinct emphasis onto assumptions, simplifications and the associated limits, leads to a clear understanding of Electrical Machine and Drive topologies and characteristics.
Author: I. P. Kopylov
Publisher:
Published: 1984
Total Pages: 288
ISBN-13:
DOWNLOAD EBOOKAuthor: Chee-Mun Ong
Publisher: Prentice Hall
Published: 1998
Total Pages: 666
ISBN-13:
DOWNLOAD EBOOKThis book and its accompanying CD-ROM offer a complete treatment from background theory and models to implementation and verification techniques for simulations and linear analysis of frequently studied machine systems. Every chapter of Dynamic Simulation of Electric Machinery includes exercises and projects that can be explored using the accompanying software. A full chapter is devoted to the use of MATLAB and SIMULINK, and an appendix provides a convenient overview of key numerical methods used. Dynamic Simulation of Electric Machinery provides professional engineers and students with a complete toolkit for modeling and analyzing power systems on their desktop computers.
Author: Paul C. Krause
Publisher: John Wiley & Sons
Published: 2013-05-22
Total Pages: 693
ISBN-13: 1118524322
DOWNLOAD EBOOKIntroducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.