A Direct Method for Parabolic PDE Constrained Optimization Problems

A Direct Method for Parabolic PDE Constrained Optimization Problems

Author: Andreas Potschka

Publisher: Springer Science & Business Media

Published: 2013-11-29

Total Pages: 220

ISBN-13: 3658044764

DOWNLOAD EBOOK

Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the user to formulate adjoint equations, which can be time-consuming and error-prone. The author describes and analyzes in detail a globalized inexact Sequential Quadratic Programming method that exploits the mathematical structures of this approach and problem class for fast numerical performance. The book features applications, including results for a real-world chemical engineering separation problem.


Multiple Shooting and Time Domain Decomposition Methods

Multiple Shooting and Time Domain Decomposition Methods

Author: Thomas Carraro

Publisher: Springer

Published: 2015-10-26

Total Pages: 424

ISBN-13: 3319233211

DOWNLOAD EBOOK

This book offers a comprehensive collection of the most advanced numerical techniques for the efficient and effective solution of simulation and optimization problems governed by systems of time-dependent differential equations. The contributions present various approaches to time domain decomposition, focusing on multiple shooting and parareal algorithms. The range of topics covers theoretical analysis of the methods, as well as their algorithmic formulation and guidelines for practical implementation. Selected examples show that the discussed approaches are mandatory for the solution of challenging practical problems. The practicability and efficiency of the presented methods is illustrated by several case studies from fluid dynamics, data compression, image processing and computational biology, giving rise to possible new research topics. This volume, resulting from the workshop Multiple Shooting and Time Domain Decomposition Methods, held in Heidelberg in May 2013, will be of great interest to applied mathematicians, computer scientists and all scientists using mathematical methods.


Trends in PDE Constrained Optimization

Trends in PDE Constrained Optimization

Author: Günter Leugering

Publisher: Springer

Published: 2014-12-22

Total Pages: 539

ISBN-13: 3319050834

DOWNLOAD EBOOK

Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics. The book is divided into five sections on “Constrained Optimization, Identification and Control”, “Shape and Topology Optimization”, “Adaptivity and Model Reduction”, “Discretization: Concepts and Analysis” and “Applications”. Peer-reviewed research articles present the most recent results in the field of PDE constrained optimization and control problems. Informative survey articles give an overview of topics that set sustainable trends for future research. This makes this special volume interesting not only for mathematicians, but also for engineers and for natural and medical scientists working on processes that can be modeled by PDEs.


Handbook of Model Predictive Control

Handbook of Model Predictive Control

Author: Saša V. Raković

Publisher: Springer

Published: 2018-09-01

Total Pages: 693

ISBN-13: 3319774891

DOWNLOAD EBOOK

Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.


Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena

Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena

Author: Alexander N. Gorban

Publisher: Springer Science & Business Media

Published: 2006-09-22

Total Pages: 554

ISBN-13: 3540358889

DOWNLOAD EBOOK

Model reduction and coarse-graining are important in many areas of science and engineering. How does a system with many degrees of freedom become one with fewer? How can a reversible micro-description be adapted to the dissipative macroscopic model? These crucial questions, as well as many other related problems, are discussed in this book. All contributions are by experts whose specialities span a wide range of fields within science and engineering.


Numerical Solution of Differential Equations

Numerical Solution of Differential Equations

Author: Zhilin Li

Publisher: Cambridge University Press

Published: 2017-11-30

Total Pages: 305

ISBN-13: 1107163226

DOWNLOAD EBOOK

A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.


Optimization with PDE Constraints

Optimization with PDE Constraints

Author: Michael Hinze

Publisher: Springer Science & Business Media

Published: 2008-10-16

Total Pages: 279

ISBN-13: 1402088396

DOWNLOAD EBOOK

Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.


A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

Published: 2009

Total Pages: 481

ISBN-13: 0521734908

DOWNLOAD EBOOK

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.