Aerospace System Analysis and Optimization in Uncertainty

Aerospace System Analysis and Optimization in Uncertainty

Author: Loïc Brevault

Publisher: Springer Nature

Published: 2020-08-26

Total Pages: 477

ISBN-13: 3030391264

DOWNLOAD EBOOK

Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.


Uncertainty Quantification

Uncertainty Quantification

Author: Ralph C. Smith

Publisher: SIAM

Published: 2013-12-02

Total Pages: 400

ISBN-13: 161197321X

DOWNLOAD EBOOK

The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.


Model Validation and Uncertainty Quantification, Volume 3

Model Validation and Uncertainty Quantification, Volume 3

Author: Robert Barthorpe

Publisher: Springer

Published: 2018-07-30

Total Pages: 303

ISBN-13: 3319747932

DOWNLOAD EBOOK

Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics, 2018, the third volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty


21st European Symposium on Computer Aided Process Engineering

21st European Symposium on Computer Aided Process Engineering

Author: E. N. Pistikopoulos

Publisher: Elsevier

Published: 2011-07-21

Total Pages: 2087

ISBN-13: 044453895X

DOWNLOAD EBOOK

The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."


Active Subspaces

Active Subspaces

Author: Paul G. Constantine

Publisher: SIAM

Published: 2015-03-17

Total Pages: 105

ISBN-13: 1611973864

DOWNLOAD EBOOK

Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.


Approximation of Large-Scale Dynamical Systems

Approximation of Large-Scale Dynamical Systems

Author: Athanasios C. Antoulas

Publisher: SIAM

Published: 2009-06-25

Total Pages: 489

ISBN-13: 0898716586

DOWNLOAD EBOOK

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.


Process Systems Engineering 2003

Process Systems Engineering 2003

Author: Bingzhen Chen

Publisher: Elsevier

Published: 2003-06-06

Total Pages: 801

ISBN-13: 0080542182

DOWNLOAD EBOOK

Contains proceedings from the 8th International Symposium on Process Systems Engineering (PSE), which brought together the global community of process systems engineering researchers and practitioners involved in the creation and application of computing based methodologies for planning, design, operation, control, and maintenance of chemical processes.Contains proceeding from the 8th International Symposium on Process Systems EngineeringConference theme for PSE 2003 is 'supporting business decision making'