This book offers the first strong evidence of the existence of CP violation in neutral B decays extracted from sophisticated B factories in the US and Japan. It also holds out the expectation of rare B decays and D, K physics in the near future. In addition, new physics beyond the Standard Model is described. Both experimental and theoretical points of view are given.
Our current understanding of the fundamental building blocks of the Universe, summarised by the Standard Model of particle physics, is incomplete. For example, it fails to explain why we do not see equal, or almost equal, numbers of particles and their antiparticle partners. To explain this asymmetry requires, among other effects, a mechanism known as charge-parity (CP) violation that causes differences between the rates at which particles and antiparticles decay. CP violation is seen in systems containing bottom and strange quarks, but not in those with up, charm or top quarks. This thesis describes searches for particle-antiparticle asymmetries in the decay rates of charmed mesons. No evidence of CP violation is found. With current sensitivities, an asymmetry large enough to observe probably could not be explained by the Standard Model. Instead an explanation could come from new physics, for example contributions from supersymmetric or other undiscovered heavy particles. In the thesis, the development of new techniques to search for these asymmetries is described. They are applied to data from the LHCb experiment at CERN to make precise measurements of asymmetries in the D^+->K^-K^+pi^+ decay channel. This is the most promising charged D decay for CP violation searches.
The revolution in twentieth-century physics has offered answers to many of the big questions of existence, such as the ultimate nature of things and how the universe came into being. It has undermined our belief in a Newtonian mechanistic universe and a deterministic future, posing questions about parallel universes, time-travel, and the origin and end of everything. At the same time we have witnessed amazing attempts at unification so that physicists are able to contemplate the discovery of a single theory of everything from which we could derive the masses and types of all particles and their interactions. This book tells the story of these discoveries and the people who made them, largely through the work of Nobel Prize-winning physicists.
The proceedings contains reviews and short communications on the following topics: status of the standard model, rare decays and CP violation, heavy quark physics, neutrino physics, Higgs bosons and electroweak breaking, nonperturbative effects in electroweak interactions, physics beyond the standard models, quantum chromodynamics and strong interactions.
The lecture notes in this proceedings present an introductory and updated review of some of the current topics of interest in theory and phenomenology of the strong and electroweak interactions.
"Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear. The book is addressed to undergraduate and graduate students in physics and will also be appreciated by many professional physicists. It will likewise be of interest to students, researchers and teachers of other natural sciences, as well as to engineers, high-school teachers and the curious general reader, who will come to understand what physics is about and how it describes the different phenomena of Nature. Not only will readers of this book learn much about physics, they will also learn to love it.