Bent-Shaped Liquid Crystals: Structures and Physical Properties provides insight into the latest developments in the research on liquid crystals formed by bent-shaped mesogens. After a historical introduction, the expert authors discuss different kinds of mesophase structures formed by bent-shaped molecules. This book devotes the majority of its pages to physical properties such as polar switching, optics and non-linear optics, and behavior in restricted geometries. However, as chemistry is often highly relevant to the emergence of new phases, particularly with reflection symmetry breaking, it also involves a broad spectrum of interesting chemistry viewpoints.
Much more than a slight revision, this second edition of the successful "Handbook of Liquid Crystals" is completely restructured and streamlined, with updated as well as completely new topics, 100% more content and a new team of editors and authors. As such, it fills the gap for a definitive, single source reference for all those working in the field of organized fluids and will set the standard for the next decade. The Handbook's new structure facilitates navigation and combines the presentation of the content by topic and by liquid-crystal type: A fundamentals volume sets the stage for an understanding of the liquid crystal state of matter, while individual volumes cover the main types and forms, with a final volume bringing together the diverse liquid crystal phases through their applications. This unrivaled, all-embracing coverage represents the undiluted knowledge on liquid crystals, making the Handbook a must-have wherever liquid crystals are investigated, produced or used, and in institutions where their science and technology is taught. Also available electronically on Wiley Online Library, www.wileyonlinelibrary.com/ref/holc Volume 1: Fundamentals of Liquid Crystals Volume 2: Physical Properties and Phase Behavior of Liquid Crystals Volume 3: Nematic and Chiral Nematic Liquid Crystals Volume 4: Smectic and Columnar Liquid Crystals Volume 5: Non-Conventional Liquid Crystals Volume 6: Nanostructured and Amphiphilic Liquid Crystals Volume 7: Supermolecular and Polymeric Liquid Crystals Volume 8: Applications of Liquid Crystals
Provides comprehensive knowledge on concepts, theoretical methods and state-of-the-art computational techniques for the simulation of self-assembling systems Looks at the field of self-assembly from a theoretical perspective Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics
This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volumes 2A and 2B concentrate on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. These volumes are therefore by far the most detailed reference sources on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volumes 2A and 2B concentrate on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. These volumes are therefore by far the most detailed reference sources on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.
This handbook is a unique compendium of knowledge on all aspects of the physics of liquid crystals. In over 500 pages it provides detailed information on the physical properties of liquid crystals as well as the recent theories and results on phase transitions, defects and textures of different types of liquid crystals. An in-depth understanding of the physical fundamentals is a prerequisite for everyone working in the field of liquid crystal research. With this book the experts as well as graduate students entering the field get all the information they need.
Publishes papers that report results of research in statistical physics, plasmas, fluids, and related interdisciplinary topics. There are sections on (1) methods of statistical physics, (2) classical fluids, (3) liquid crystals, (4) diffusion-limited aggregation, and dendritic growth, (5) biological physics, (6) plasma physics, (7) physics of beams, (8) classical physics, including nonlinear media, and (9) computational physics.