The purpose of MetFoam conference series is to provide a state-of-the-art review on lightweight porous metals and metallic foams and a forum for discussions and networking opportunities for scientists working in this field. Topics included in this volume include the following: • Fabrication by conventional and novel methods including additive manufacturing • Characterization • Properties of compressed and uncompressed foam • Design of porous metals, metallic foams, and lattice structures• Fluid, heat, and mass transfer • Porous biomaterials• Nanoporous metals• Industrial applications of porous metals and metallic foams
This book contains papers presented in the 7th International Conference on Production, Energy and Reliability (ICPER 2020) under the banner of World Engineering, Science & Technology Congress (ESTCON2020) held from 14th to 16th July 2020 at Borneo Convention Centre, Kuching, Malaysia. The conference contains papers presented by academics and industrial practitioners showcasing their latest advancements and findings in mechanical engineering areas with an emphasis on sustainability and the Industrial Revolution 4.0. The papers are categorized under the following tracks and topics of research: IoT, Reliability and Simulation Advanced Materials, Corrosion and Autonomous Production Efficient Energy Systems and Thermofluids Production, Manufacturing and Automotive
This book presents the selected proceedings of the (third) fourth Vehicle and Automotive Engineering conference, reflecting the outcomes of theoretical and practical studies and outlining future development trends in a broad field of automotive research. The conference’s main themes included design, manufacturing, economic and educational topics.
Created by professors for professors, the Faculty Awards compendium is the first and only university awards program in the United States based on faculty peer evaluations. The Faculty Awards series recognizes and rewards outstanding faculty members at colleges and universities across the United States. Voting was not open to students or the public at large.
Explains ways to design and process metallic foams, including many non-aluminum foams. This book illustrates the numerous industry applications where metallic foams and porous metals are being implemented.
This book focuses on the effects of the material, porosity, pore size and pore shape on flow behaviour and heat transfer in microscale porous media manufactured using a space holder method. It also describes a novel approach to studying flow behaviour in non-transparent materials such as porous metals via flow visualization in transparent media that mimic the porous structure. The book employs a combination of microparticle image velocimetry – a modern, advanced technique – and pressure drop measurement – a more traditional method – that makes the mechanistic study of several phenomena possible. It covers the identification of various flow regimes and their boundaries, velocity profiles on the microscale, the heat transfer coefficient under forced convection, and the correlation between flow behaviour on the pore scale and the convective heat transfer performance of the porous media. Understanding the fundamentals of porous flow, especially on the microscale, is critical for applications of porous media in heat exchangers, catalytic convertors, chemical reactors, filtration and oil extraction. Accordingly, this book offers a valuable resource for all researchers, graduate students and engineers working in the areas of porous flow and porous materials.
10th International Conference on Porous Metals and Metallic Foams (MetFoam 2017) Selected, peer reviewed papers from the 10th International Conference on Porous Metals and Metallic Foams (MetFoam 2017), September 14-17, 2017, Nanjing, China
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973
Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional Machining Processes to be a source of ideas and processes for development and industrial application.