This collection of papers from the ICEC conference covers a wide range of aspects of evolutionary computing. This includes principles of evolutionary computation such as adaptation and self-adaption, variation operators, representational issues, and theoretical investigations.
The objective is to provide the latest developments in the area of soft computing. These are the cutting edge technologies that have immense application in various fields. All the papers will undergo the peer review process to maintain the quality of work.
Computational intelligence is a general term for a class of algorithms designed by nature's wisdom and human intelligence. Computer scientists have proposed many computational intelligence algorithms with heuristic features. These algorithms either mimic the evolutionary processes of the biological world, mimic the physiological structure and bodily functions of the organism, imitate the behavior of the animal's group, mimic the characteristics of human thought, language, and memory processes, or mimic the physical phenomena of nature, hoping to simulate the wisdom of nature and humanity enables an optimal solution to the problem and solves an acceptable solution in an acceptable time. Computational intelligent algorithms have received extensive attention at home and abroad, and have become an important research direction of artificial intelligence and computer science. This book will introduce the application of intelligent optimization algorithms in detail from the aspects of computational intelligence, job shop scheduling problems, multi-objective optimization problems, and machine learning
This book gives a detailed information of various soft computing techniques across various fields for solving relevant, real-life problems. The authors, all female leaders in the field, show how soft computing uses approximate calculations to provide imprecise yet usable solutions to complex computational problems. This enables solutions for problems that may be either unsolvable or too time-consuming to solve with current hardware. The authors show how these techniques, when applied, have proven to be efficient and robust in many difficult situations. As an important part of the Women in Science and Engineering book series, the work highlights the contribution of women leaders in soft computing, inspiring women and men, girls and boys to enter and apply themselves to secure the future in the field.
7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151
TheArti?cialLifetermappearedmorethan20yearsagoinasmallcornerofNew Mexico, USA. Since then the area has developed dramatically, many researchers joining enthusiastically and research groups sprouting everywhere. This frenetic activity led to the emergence of several strands that are now established ?elds in themselves. We are now reaching a stage that one may describe as maturer: with more rigour, more benchmarks, more results, more stringent acceptance criteria, more applications, in brief, more sound science. This, which is the n- ural path of all new areas, comes at a price, however. A certain enthusiasm, a certain adventurousness from the early years is fading and may have been lost on the way. The ?eld has become more reasonable. To counterbalance this and to encourage lively discussions, a conceptual track, where papers were judged on criteria like importance and/or novelty of the concepts proposed rather than the experimental/theoretical results, has been introduced this year. A conference on a theme as broad as Arti?cial Life is bound to be very - verse,but a few tendencies emerged. First, ?elds like ‘Robotics and Autonomous Agents’ or ‘Evolutionary Computation’ are still extremely active and keep on bringing a wealth of results to the A-Life community. Even there, however, new tendencies appear, like collective robotics, and more speci?cally self-assembling robotics, which represent now a large subsection. Second, new areas appear.
Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface.
This book and its companion volume, LNCS vols. 7928 and 7929 constitute the proceedings of the 4th International Conference on Swarm Intelligence, ICSI 2013, held in Harbin, China in June 2013. The 129 revised full papers presented were carefully reviewed and selected from 268 submissions. The papers are organized in 22 cohesive sections covering all major topics of swarm intelligence research and developments. The following topics are covered in this volume: analysis of swarm intelligence based algorithms, particle swarm optimization, applications of particle swarm optimization algorithms, ant colony optimization algorithms, biogeography-based optimization algorithms, novel swarm-based search methods, bee colony algorithms, differential evolution, neural networks, fuzzy methods, evolutionary programming and evolutionary games.
This comprehensive reference text discusses nature inspired algorithms and their applications. It presents the methodology to write new algorithms with the help of MATLAB programs and instructions for better understanding of concepts. It covers well-known algorithms including evolutionary algorithms, genetic algorithm, particle Swarm optimization and differential evolution, and recent approached including gray wolf optimization. A separate chapter discusses test case generation using techniques such as particle swarm optimization, genetic algorithm, and differential evolution algorithm. The book- Discusses in detail various nature inspired algorithms and their applications Provides MATLAB programs for the corresponding algorithm Presents methodology to write new algorithms Examines well-known algorithms like the genetic algorithm, particle swarm optimization and differential evolution, and recent approaches like gray wolf optimization. Provides conceptual linking of algorithms with theoretical concepts The text will be useful for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. Discussing nature inspired algorithms and their applications in a single volume, this text will be useful as a reference text for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. It discusses important algorithms including deterministic algorithms, randomized algorithms, evolutionary algorithms, particle swarm optimization, big bang big crunch (BB-BC) algorithm, genetic algorithm and grey wolf optimization algorithm. "
This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14–16, 2017. It focuses on how to choose the right model in applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the lastest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.