Covering a variety of Excel simulations by using Visual Basic (VBA), from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
This new and unique book demonstrates that Excel and VBA can play an important role in the explanation and implementation of numerical methods across finance. Advanced Modelling in Finance provides a comprehensive look at equities, options on equities and options on bonds from the early 1950s to the late 1990s. The book adopts a step-by-step approach to understanding the more sophisticated aspects of Excel macros and VBA programming, showing how these programming techniques can be used to model and manipulate financial data, as applied to equities, bonds and options. The book is essential for financial practitioners who need to develop their financial modelling skill sets as there is an increase in the need to analyse and develop ever more complex 'what if' scenarios. Specifically applies Excel and VBA to the financial markets Packaged with a CD containing the software from the examples throughout the book Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
This book covers a variety of Excel simulations, from gambling to genetics. The 130 simulations covered offer an exciting and fun alternative the usual Excel topics and include situations such as roulette, sex determination, population growth, and traffic patterns, among 125 others.
Covering a variety of Excel simulations, from gambling to genetics, this introduction is for people interested in modeling future events, without the cost of an expensive textbook. The simulations covered offer a fun alternative to the usual Excel topics and include situations such as roulette, password cracking, sex determination, population growth, and traffic patterns, among many others.
This comprehensive guide offers traders, quants, and students the tools and techniques for using advanced models for pricing options. The accompanying website includes data files, such as options prices, stock prices, or index prices, as well as all of the codes needed to use the option and volatility models described in the book. Praise for Option Pricing Models & Volatility Using Excel-VBA "Excel is already a great pedagogical tool for teaching option valuation and risk management. But the VBA routines in this book elevate Excel to an industrial-strength financial engineering toolbox. I have no doubt that it will become hugely successful as a reference for option traders and risk managers." —Peter Christoffersen, Associate Professor of Finance, Desautels Faculty of Management, McGill University "This book is filled with methodology and techniques on how to implement option pricing and volatility models in VBA. The book takes an in-depth look into how to implement the Heston and Heston and Nandi models and includes an entire chapter on parameter estimation, but this is just the tip of the iceberg. Everyone interested in derivatives should have this book in their personal library." —Espen Gaarder Haug, option trader, philosopher, and author of Derivatives Models on Models "I am impressed. This is an important book because it is the first book to cover the modern generation of option models, including stochastic volatility and GARCH." —Steven L. Heston, Assistant Professor of Finance, R.H. Smith School of Business, University of Maryland
This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations.
The complete guide to the principles and practice of risk quantification for business applications. The assessment and quantification of risk provide an indispensable part of robust decision-making; to be effective, many professionals need a firm grasp of both the fundamental concepts and of the tools of the trade. Business Risk and Simulation Modelling in Practice is a comprehensive, in–depth, and practical guide that aims to help business risk managers, modelling analysts and general management to understand, conduct and use quantitative risk assessment and uncertainty modelling in their own situations. Key content areas include: Detailed descriptions of risk assessment processes, their objectives and uses, possible approaches to risk quantification, and their associated decision-benefits and organisational challenges. Principles and techniques in the design of risk models, including the similarities and differences with traditional financial models, and the enhancements that risk modelling can provide. In depth coverage of the principles and concepts in simulation methods, the statistical measurement of risk, the use and selection of probability distributions, the creation of dependency relationships, the alignment of risk modelling activities with general risk assessment processes, and a range of Excel modelling techniques. The implementation of simulation techniques using both Excel/VBA macros and the @RISK Excel add-in. Each platform may be appropriate depending on the context, whereas the core modelling concepts and risk assessment contexts are largely the same in each case. Some additional features and key benefits of using @RISK are also covered. Business Risk and Simulation Modelling in Practice reflects the author′s many years in training and consultancy in these areas. It provides clear and complete guidance, enhanced with an expert perspective. It uses approximately one hundred practical and real-life models to demonstrate all key concepts and techniques; these are accessible on the companion website.
In today's increasingly competitive financial world, successful risk management, portfolio management, and financial structuring demand more than up-to-date financial know-how. They also call for quantitative expertise, including the ability to effectively apply mathematical modeling tools and techniques, in this case credit. Credit Risk Modeling using Excel and VBA with DVD provides practitioners with a hands on introduction to credit risk modeling. Instead of just presenting analytical methods it shows how to implement them using Excel and VBA, in addition to a detailed description in the text a DVD guides readers step by step through the implementation. The authors begin by showing how to use option theoretic and statistical models to estimate a borrowers default risk. The second half of the book is devoted to credit portfolio risk. The authors guide readers through the implementation of a credit risk model, show how portfolio models can be validated or used to access structured credit products like CDO’s. The final chapters address modeling issues associated with the new Basel Accord.
Teach Your Students How to Become Successful Working Quants Quantitative Finance: A Simulation-Based Introduction Using Excel provides an introduction to financial mathematics for students in applied mathematics, financial engineering, actuarial science, and business administration. The text not only enables students to practice with the basic techniques of financial mathematics, but it also helps them gain significant intuition about what the techniques mean, how they work, and what happens when they stop working. After introducing risk, return, decision making under uncertainty, and traditional discounted cash flow project analysis, the book covers mortgages, bonds, and annuities using a blend of Excel simulation and difference equation or algebraic formalism. It then looks at how interest rate markets work and how to model bond prices before addressing mean variance portfolio optimization, the capital asset pricing model, options, and value at risk (VaR). The author next focuses on binomial model tools for pricing options and the analysis of discrete random walks. He also introduces stochastic calculus in a nonrigorous way and explains how to simulate geometric Brownian motion. The text proceeds to thoroughly discuss options pricing, mostly in continuous time. It concludes with chapters on stochastic models of the yield curve and incomplete markets using simple discrete models. Accessible to students with a relatively modest level of mathematical background, this book will guide your students in becoming successful quants. It uses both hand calculations and Excel spreadsheets to analyze plenty of examples from simple bond portfolios. The spreadsheets are available on the book’s CRC Press web page.