This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€"to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.
Biographies of 23 important mathematicians span many centuries and cultures. Historical Learning Tasks provide 21 in-depth treatments of a variety of historical problems.
This book offers insights into the history of mathematics education, covering both the current state of the art of research and the methodology of the field. History of mathematics education is treated in the book as a part of social history. This book grew out of the presentations delivered at the International Congress on Mathematics Education in Hamburg. Modern development and growing internationalization of mathematics education made it clear that many urgent questions benefit from a historical approach. The chapters present viewpoints from the following countries: Belgium, Brazil, Cambodia, China, Cyprus, Germany, Iceland, Italy, the Netherlands, Russia,Spain and Sweden. Each chapter represents significant directions of historical studies. The book is a valuable source for every historian of mathematics education and those interested in mathematics education and its development.
Where did math come from? Who thought up all those algebra symbols, and why? What is the story behind π π? … negative numbers? … the metric system? … quadratic equations? … sine and cosine? … logs? The 30 independent historical sketches in Math through the Ages answer these questions and many others in an informal, easygoing style that is accessible to teachers, students, and anyone who is curious about the history of mathematical ideas. Each sketch includes Questions and Projects to help you learn more about its topic and to see how the main ideas fit into the bigger picture of history. The 30 short stories are preceded by a 58-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. “What to Read Next” and reading suggestions after each sketch provide starting points for readers who want to learn more. This book is ideal for a broad spectrum of audiences, including students in history of mathematics courses at the late high school or early college level, pre-service and in-service teachers, and anyone who just wants to know a little more about the origins of mathematics.
Active engagement is the key to learning. You want your students doing something that stimulates them to ask questions and creates a need to know. Teaching Mathematics Through Games presents a variety of classroom-tested exercises and activities that provoke the active learning and curiosity that you hope to promote. These games run the gamut from well-known favorites like SET and Settlers of Catan to original games involving simulating structural inequality in New York or playing Battleship with functions. The book contains activities suitable for a wide variety of college mathematics courses, including general education courses, math for elementary education, probability, calculus, linear algebra, history of math, and proof-based mathematics. Some chapter activities are short term, such as a drop-in lesson for a day, and some are longer, including semester-long projects. All have been tested, refined, and include extensive implementation notes.
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
One of the leading historians in the mathematics field, Victor Katz provides a world view of mathematics, balancing ancient, early modern, and modern history.