Low-Dimensional Systems

Low-Dimensional Systems

Author: Tobias Brandes

Publisher: Springer

Published: 2008-01-11

Total Pages: 220

ISBN-13: 3540464387

DOWNLOAD EBOOK

Experimental progress over the past few years has made it possible to test a n- ber of fundamental physical concepts related to the motion of electrons in low dimensions. The production and experimental control of novel structures with typical sizes in the sub-micrometer regime has now become possible. In parti- lar, semiconductors are widely used in order to con?ne the motion of electrons in two-dimensional heterostructures. The quantum Hall e?ect was one of the ?rst highlights of the new physics that is revealed by this con?nement. In a further step of the technological development in semiconductor-heterostructures, other arti?cial devices such as quasi one-dimensional ‘quantum wires’ and ‘quantum dots’ (arti?cial atoms) have also been produced. These structures again di?er very markedly from three- and two-dimensional systems, especially in relation to the transport of electrons and the interaction with light. Although the technol- ical advances and the experimental skills connected with these new structures are progressing extremely fast, our theoretical understanding of the physical e?ects (such as the quantum Hall e?ect) is still at a very rudimentary level. In low-dimensional structures, the interaction of electrons with one another and with other degrees of freedoms such as lattice vibrations or light gives rise to new phenomena that are very di?erent from those familiar in the bulk ma- rial. The theoretical formulation of the electronic transport properties of small devices may be considered well-established, provided interaction processes are neglected.


The Physics of Low-dimensional Structures

The Physics of Low-dimensional Structures

Author: Georgios P. Triberis

Publisher:

Published: 2007

Total Pages: 0

ISBN-13: 9781600214776

DOWNLOAD EBOOK

This book covers the field of low dimensional structures, starting from the selectively doped double heterostructures n-A1GaAs/GaAs/n-A1GaAs, and (strained) p-Si/SiGe/p-Si (quantum wells). The behaviour of the sheet electron density, the subband populations and energies as a function of the well width, the spacer thickness and the doping concentration is analysed. The temperature dependence of the bulk electron concentration versus the quasi-2DEG are discussed. In the framework of Boltzmann's transport theory a detailed study of the mobility is presented at low and high temperatures taking into account all the relevant scattering mechanisms. The pseudomorphic Si/SiGe undoped quantum wells are a perfect example for the study of the non-parabolicity of the hole-bands. For the first time in a book an exact solution of the multiband effective mass equation that describes the heavy, light and split-off hole valence bands is introduced, and interband transitions and selection rules are obtained. Reducing dimensionality new aspects concerning optical and transport properties of quantum wires (QWRS) is discussed. Specifically, the photoluminescence and the microphotoluminescence spectra of V-shaped QWRS is theoretically interpreted leading to a realistic cartography of the interface roughness of these systems. A computational approach for the solution of the eigenvalue problem in low-dimensional systems of complex but realistic geometry is also presented for the first time in a book, and transport theoretical considerations will lead to a systematic study of the mobility. As DNA could be considered as a one-dimensional "molecular wire" the study of carrier transport along DNA is discussed in terms of hopping transport. A computational scheme is presented which allows the study of near-field magnetoabsorpsion spectra of Quantum Dots (QD) of any given geometry, under magnetic field of any orientation. The effect of the spatial confinement imposed by the QD dimensions and the magnetic confinement governed by the magnetic field are explored. The influence of the Coulomb interactions between electrons and holes is also discussed. The applicability of the method in actual experiments, i.e. the illumination of a nanostructure with a near-field probe in conjunction with the simultaneous application of an external magnetic field, may become a challenge to experimentalists. Finally, magnetothermoelectic transport in the fractional quantum Hall effect (FQHE) regime is discussed. The theoretical framework for the calculation of the resistivity, the thermopower and the thermal conductivity for two-dimensional electron and hole gases, at low temperatures and strong perpendicular magnetic fields is outlined. The composite fermion picture enables the use of the integer quantum Hall effect and Shubnikov - de Haas conductivity models for a quantitative comparison with experiment. A study on the validity of fundamental physical laws such as the Wiedemann-Franz law in two-dimensional structures is also presented.


Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures

Author: Paul N. Butcher

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 597

ISBN-13: 1489924159

DOWNLOAD EBOOK

Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.


Quantum Wells, Wires and Dots

Quantum Wells, Wires and Dots

Author: Paul Harrison

Publisher: John Wiley & Sons

Published: 2005-10-31

Total Pages: 511

ISBN-13: 0470010819

DOWNLOAD EBOOK

Quantum Wells, Wires and Dots Second Edition: Theoretical andComputational Physics of Semiconductor Nanostructures providesall the essential information, both theoretical and computational,for complete beginners to develop an understanding of how theelectronic, optical and transport properties of quantum wells,wires and dots are calculated. Readers are lead through a series ofsimple theoretical and computational examples giving solidfoundations from which they will gain the confidence to initiatetheoretical investigations or explanations of their own. Emphasis on combining the analysis and interpretation ofexperimental data with the development of theoretical ideas Complementary to the more standard texts Aimed at the physics community at large, rather than just thelow-dimensional semiconductor expert The text present solutions for a large number of realsituations Presented in a lucid style with easy to follow steps related toaccompanying illustrative examples


Low-Dimensional Electronic Systems

Low-Dimensional Electronic Systems

Author: Guenther Neubauer

Publisher: Springer Science & Business Media

Published: 2013-03-13

Total Pages: 367

ISBN-13: 3642848575

DOWNLOAD EBOOK

Owing to new physical, technological, and device concepts of low-dimensionalelectronic systems, the physics and fabrication of quasi-zero, one- and two-dimensional systems are rapidly growing fields. The contributions presented in this volume cover results of nanostructure fabrication including recently developed techniques, for example, tunneling probe techniques and molecular beam epitaxy, quantum transport including the integer and fractional quantum Hall effect, optical and transport studies of the two-dimensional Wigner solid, phonon studies of low-dimensional systems, and Si/SiGe heterostructures and superlattices. To the readers new in the field this volume gives a comprehensive introduction and for the experts it is an update of their knowledge and a great help for decisions about future research activities.


Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Author: Thomas Ihn

Publisher: Springer Science & Business Media

Published: 2004-01-08

Total Pages: 267

ISBN-13: 0387400966

DOWNLOAD EBOOK

Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.


Low-dimensional Nanoscale Systems on Discrete Spaces

Low-dimensional Nanoscale Systems on Discrete Spaces

Author: E. Papp

Publisher: World Scientific

Published: 2007

Total Pages: 277

ISBN-13: 9812770615

DOWNLOAD EBOOK

The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmonics. Odd-even parity effects and the flux dependent oscillations of total persistent currents in discretized rings can also be invoked. Technological developments are then provided by conductance calculations characterizing 1D conductors, junctions between rings and leads or rings and dots, and by quantum LC-circuits. Accordingly, the issues presented in this book are important starting points for the design of novel nanodevices.