Primal-Dual Interior Methods for Quadratic Programming

Primal-Dual Interior Methods for Quadratic Programming

Author: Anna Shustrova

Publisher:

Published: 2015

Total Pages: 91

ISBN-13: 9781321848700

DOWNLOAD EBOOK

Interior methods are a class of computational methods for solving a con- strained optimization problem. Interior methods follow a continuous path to the solution that passes through the interior of the feasible region (i.e., the set of points that satisfy the constraints). Interior-point methods may also be viewed as methods that replace the constrained problem by a sequence of unconstrained problems in which the objective function is augmented by a weighted \barrier" term that is infinite at the boundary of the feasible region. Convergence to a solution of the constrained problem is achieved by solving a sequence of unconstrained problems in which the weight on the barrier term is steadily reduced to zero. This thesis concerns the formulation and analysis of interior methods for the solution of a quadratic programming (QP) problem, which is an optimization problem with a quadratic objective function and linear constraints. The linear constraints may include an arbitrary mixture of equality and inequality constraints, where the inequality constraints may be subject to lower and/or upper bounds. QP problems arise in a wide variety of applications. An important application is in sequential quadratic programming methods for nonlinear optimization, which involve minimizing a sequence of QP subproblems based on a quadratic approximation of the nonlinear objective function and a set of linearized nonlinear constraints. Two new interior methods for QP are proposed. Each is based on the properties of a barrier function defined in terms of both the primal and dual variables. The first method is suitable for a QP with all inequality constraints. At each iteration, the Newton equations for minimizing a quadratic model of the primal-dual barrier function are reformulated in terms of a symmetric indefinite system of equations that is solved using an inertia controlling factorization. This factorization provides an effective method for the detection and convexification of nonconvex problems. The second method is intended for problems with a mixture of equality and inequality constraints. In this case, the QP constraints are converted to so-called standard form and a primal-dual augmented Lagrangian is used to ensure the feasibility of the equality constraints in the limit.


Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods

Author: Stephen J. Wright

Publisher: SIAM

Published: 1997-01-01

Total Pages: 293

ISBN-13: 089871382X

DOWNLOAD EBOOK

Presents the major primal-dual algorithms for linear programming. A thorough, straightforward description of the theoretical properties of these methods.


Progress in Mathematical Programming

Progress in Mathematical Programming

Author: Nimrod Megiddo

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 164

ISBN-13: 1461396174

DOWNLOAD EBOOK

The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."


Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming

Author: Yurii Nesterov

Publisher: SIAM

Published: 1994-01-01

Total Pages: 414

ISBN-13: 9781611970791

DOWNLOAD EBOOK

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.


Interior Point Algorithms

Interior Point Algorithms

Author: Yinyu Ye

Publisher: John Wiley & Sons

Published: 2011-10-11

Total Pages: 440

ISBN-13: 1118030958

DOWNLOAD EBOOK

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.


Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization

Author: Cornelis Roos

Publisher: Springer Science & Business Media

Published: 2006-02-08

Total Pages: 501

ISBN-13: 0387263799

DOWNLOAD EBOOK

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.


A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems

Author: Masakazu Kojima

Publisher: Springer Science & Business Media

Published: 1991-09-25

Total Pages: 124

ISBN-13: 9783540545095

DOWNLOAD EBOOK

Following Karmarkar's 1984 linear programming algorithm, numerous interior-point algorithms have been proposed for various mathematical programming problems such as linear programming, convex quadratic programming and convex programming in general. This monograph presents a study of interior-point algorithms for the linear complementarity problem (LCP) which is known as a mathematical model for primal-dual pairs of linear programs and convex quadratic programs. A large family of potential reduction algorithms is presented in a unified way for the class of LCPs where the underlying matrix has nonnegative principal minors (P0-matrix). This class includes various important subclasses such as positive semi-definite matrices, P-matrices, P*-matrices introduced in this monograph, and column sufficient matrices. The family contains not only the usual potential reduction algorithms but also path following algorithms and a damped Newton method for the LCP. The main topics are global convergence, global linear convergence, and the polynomial-time convergence of potential reduction algorithms included in the family.


Self-Regularity

Self-Regularity

Author: Jiming Peng

Publisher: Princeton University Press

Published: 2009-01-10

Total Pages: 201

ISBN-13: 140082513X

DOWNLOAD EBOOK

Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.