Practical Finite Element Modeling in Earth Science using Matlab

Practical Finite Element Modeling in Earth Science using Matlab

Author: Guy Simpson

Publisher: John Wiley & Sons

Published: 2017-03-13

Total Pages: 384

ISBN-13: 1119248663

DOWNLOAD EBOOK

Mathematical models have become a crucial way for the Earth scientist to understand and predict how our planet functions and evolves through time and space. The finite element method (FEM) is a remarkably flexible and powerful tool with enormous potential in the Earth Sciences. This pragmatic guide explores how a variety of different Earth science problems can be translated and solved with FEM, assuming only basic programming experience. This book begins with a general introduction to numerical modeling and includes multiple sample Matlab codes to illustrate how FEM is implemented in practice. Textboxes have been included to provide additional detail, such as specialized Matlab usage or advanced topics. Covering all the key aspects, this is essential reading for those looking to master the technique, as well as those simply seeking to increase their basic level of understanding and appreciation of FEM.


Practical Finite Element Modeling in Earth Science using Matlab

Practical Finite Element Modeling in Earth Science using Matlab

Author: Guy Simpson

Publisher: John Wiley & Sons

Published: 2017-04-17

Total Pages: 266

ISBN-13: 1119248620

DOWNLOAD EBOOK

Mathematical models have become a crucial way for the Earth scientist to understand and predict how our planet functions and evolves through time and space. The finite element method (FEM) is a remarkably flexible and powerful tool with enormous potential in the Earth Sciences. This pragmatic guide explores how a variety of different Earth science problems can be translated and solved with FEM, assuming only basic programming experience. This book begins with a general introduction to numerical modeling and includes multiple sample Matlab codes to illustrate how FEM is implemented in practice. Textboxes have been included to provide additional detail, such as specialized Matlab usage or advanced topics. Covering all the key aspects, this is essential reading for those looking to master the technique, as well as those simply seeking to increase their basic level of understanding and appreciation of FEM.


Introduction to Finite and Spectral Element Methods using MATLAB

Introduction to Finite and Spectral Element Methods using MATLAB

Author: Constantine Pozrikidis

Publisher: CRC Press

Published: 2005-06-17

Total Pages: 681

ISBN-13: 1584885297

DOWNLOAD EBOOK

Why another book on the finite element method? There are currently more than 200 books in print with "Finite Element Method" in their titles. Many are devoted to special topics or emphasize error analysis and numerical accuracy. Others stick to the fundamentals and do little to describe the development and implementation of algorithms for solving real-world problems. Introduction to Finite and Spectral Element Methods Using MATLAB provides a means of quickly understanding both the theoretical foundation and practical implementation of the finite element method and its companion spectral element method. Written in the form of a self-contained course, it introduces the fundamentals on a need-to-know basis and emphasizes algorithm development and computer implementation of the essential procedures. Firmly asserting the importance of simultaneous practical experience when learning any numerical method, the author provides FSELIB: a software library of user-defined MATLAB functions and complete finite and spectral element codes. FSELIB is freely available for download from http://dehesa.freeshell.org, which is also a host for the book, providing further information, links to resources, and FSELIB updates. The presentation is suitable for both self-study and formal course work, and its state-of-the-art review of the field make it equally valuable as a professional reference. With this book as a guide, you immediately will be able to run the codes as given and graphically display solutions to a wide variety of problems in heat transfer and solid, fluid, and structural mechanics.


MATLAB Guide to Finite Elements

MATLAB Guide to Finite Elements

Author: Peter I. Kattan

Publisher: Springer Science & Business Media

Published: 2010-05-13

Total Pages: 430

ISBN-13: 3540706984

DOWNLOAD EBOOK

later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me (pkattan@tedata. net. jo and pkattan@lsu. edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.


The Finite Element Method Using MATLAB

The Finite Element Method Using MATLAB

Author: Young W. Kwon

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 624

ISBN-13: 1420041886

DOWNLOAD EBOOK

Expanded to include a broader range of problems than the bestselling first edition, Finite Element Method Using MATLAB: Second Edition presents finite element approximation concepts, formulation, and programming in a format that effectively streamlines the learning process. It is written from a general engineering and mathematical perspective rather than that of a solid/structural mechanics basis. What's new in the Second Edition? Each chapter in the Second Edition now includes an overview that outlines the contents and purpose of each chapter. The authors have also added a new chapter of special topics in applications, including cracks, semi-infinite and infinite domains, buckling, and thermal stress. They discuss three different linearization techniques to solve nonlinear differential equations. Also included are new sections on shell formulations and MATLAB programs. These enhancements increase the book's already significant value both as a self-study text and a reference for practicing engineers and scientists.


MATLAB Guide to Finite Elements

MATLAB Guide to Finite Elements

Author: Peter Issa Kattan

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 402

ISBN-13: 9783540438748

DOWNLOAD EBOOK

"This book is concerned with the numerical implementation of Finite Element Analysis using the computer program MATLAB, which is very popular today in engineering and engineering education. The book contains a short tutorial on MATLAB as well as a systematic strategy for the treatment of finite element method. The book is directed towards both students and researchers in engineering. Various examples and exercises are provided out of Mechanical Engineering, Civil Engineering, Aerospace Engineering or Materials Science."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved


Development and Application of the Finite Element Method based on MatLab

Development and Application of the Finite Element Method based on MatLab

Author: Herbert Baaser

Publisher: Springer Science & Business Media

Published: 2010-05-10

Total Pages: 70

ISBN-13: 3642131530

DOWNLOAD EBOOK

The intention of this booklet is a brief but general introduction into the treatment of the Finite Element Method (FEM). The FEM has become the leading method in computer–oriented mechanics, so that many scienti?c brancheshavegrownup besides overthelastdecades. Nevertheless,theFEM today is a question of economy. On the one hand its industrial application is forced to reduce product development costs and time, on the other hand a large number of commercial FEM codes and a still growing number of software for e?ective pre– and postprocessors are available in the meantime. Due to that, today it is a quite challenging task to operate with all these di?erent tools at the same time and to understand all handling and so- tion techniques developed over the last years. So, we want to help in getting a deeper insight into the main “interfaces” between the “customers of the FEM” and the codes itself by providing a totally open structured FE–code based on Matlab, which is a very powerful tool in operating with matrix based formulations. That idea and conditions forced us some years ago to initiateDAEdalon as a tool for general FE developments in research appli- tions. In spite of still existing high sophisticated – mostly commercial – FE codes, the success and the acceptance of such a structured tool justify that decision afterwards more and more.


Introduction to Finite Element Analysis Using MATLAB and Abaqus

Introduction to Finite Element Analysis Using MATLAB and Abaqus

Author: Amar Khennane

Publisher: CRC Press

Published: 2013-06-10

Total Pages: 486

ISBN-13: 1466580216

DOWNLOAD EBOOK

There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balan


Finite Element Analysis: With Numeric And Symbolic Matlab

Finite Element Analysis: With Numeric And Symbolic Matlab

Author: John Edward Akin

Publisher: World Scientific

Published: 2022-12-02

Total Pages: 662

ISBN-13: 9811250634

DOWNLOAD EBOOK

This comprehensive compendium presents the detailed theory, implementation and application of finite element analysis via heavily commented Matlab scripts. The book includes over 110 examples of the methods, and has a very detailed subject index. It uniquely illustrates the use of symbolic Matlab capabilities to derive element interpolation functions and to analytically integrated complicated element matrices.The useful volume text is suitable as a reference on finite element methods and efficient Matlab programming. Chapters prominently end with a detailed summary of the important features and tables of useful finite element matrices. It can be used as the textbook for introductory, intermediate, or advanced courses utilizing numerically integrated and curvilinear element.


MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling

Author: Özlem Özgün

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 428

ISBN-13: 0429854609

DOWNLOAD EBOOK

This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.