Climate Change and Plant Abiotic Stress Tolerance

Climate Change and Plant Abiotic Stress Tolerance

Author: Narendra Tuteja

Publisher: Wiley-Blackwell

Published: 2014-02-17

Total Pages: 1208

ISBN-13: 9783527334919

DOWNLOAD EBOOK

In this ready reference, a global team of experts comprehensively cover molecular and cell biology-based approaches to the impact of increasing global temperatures on crop productivity. The work is divided into four parts. Following an introduction to the general challenges for agriculture around the globe due to climate change, part two discusses how the resulting increase of abiotic stress factors can be dealt with. The third part then outlines the different strategies and approaches to address the challenge of climate change, and the whole is rounded off by a number of specific examples of improvements to crop productivity. With its forward-looking focus on solutions, this book is an indispensable help for the agro-industry, policy makers and academia.


Oxidative Stress Responses in Plants

Oxidative Stress Responses in Plants

Author:

Publisher: Elsevier

Published: 2023-02-16

Total Pages: 360

ISBN-13: 032391375X

DOWNLOAD EBOOK

Oxidative Stress Response in Plants, Volume 105 covers environmental stress conditions and the accumulation of reactive oxygen species (ROS). During many stress conditions such as salt, drought, heat, and pathogen infection, changes in metabolic fluxes and alterations in enzymatic activities result in the accumulation of ROS, a major contributor to loss of growth and productivity. High levels of ROS can lead to oxidative stress which damages proteins and DNA, ultimately resulting in plant cell death. This volume provides comprehensive insights into ROS biology in plants, with a focus on plant growth and development, plant defense responses, and plant acclimation to challenging environments. On the other hand, ROS evolves into potent signaling molecules that play crucial roles in abiotic and biotic stress sensing, integration of different environmental signals, and activation of stress-response networks, thereby contributing to the establishment of improved stress resilience. Provides a comprehensive overview of ROS biology in plants Focuses on the production, processing and signaling roles of ROS in plants Written by world-leading experts


Abiotic Stress Responses in Plants

Abiotic Stress Responses in Plants

Author: Parvaiz Ahmad

Publisher: Springer Science & Business Media

Published: 2011-11-16

Total Pages: 475

ISBN-13: 146140634X

DOWNLOAD EBOOK

Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of “climate change,” a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, abberations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.


Crop Stress and its Management: Perspectives and Strategies

Crop Stress and its Management: Perspectives and Strategies

Author: B. Venkateswarlu

Publisher: Springer Science & Business Media

Published: 2011-11-22

Total Pages: 617

ISBN-13: 9400722206

DOWNLOAD EBOOK

Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.


Oxidative Damage to Plants

Oxidative Damage to Plants

Author: Parvaiz Ahmad

Publisher: Academic Press

Published: 2014-01-29

Total Pages: 666

ISBN-13: 0128004606

DOWNLOAD EBOOK

With contributions that review research on this topic throughout the world, Oxidative Damage to Plants covers key areas of discovery, from the generation of reactive oxygen species (ROSs), their mechanisms, quenching of these ROSs through enzymatic and non-enzymatic antioxidants, and detailed aspects of such antioxidants as SOD and CAT. Environmental stress is responsible for the generation of oxidative stress, which causes oxidative damage to biomolecules and hence reduces crop yield. To cope up with these problems, scientists have to fully understand the generation of reactive oxygen species, its impact on plants and how plants will be able to withstand these stresses. Provides invaluable information about the role of antioxidants in alleviating oxidative stress Examines both the negative effects (senescence, impaired photosynthesis and necrosis) and positive effects (crucial role that superoxide plays against invading microbes) of ROS on plants Features contributors from a variety of regions globally


Oxidative Stress in Plants

Oxidative Stress in Plants

Author: Dirk Inze

Publisher: CRC Press

Published: 2001-10-18

Total Pages: 417

ISBN-13: 0203303148

DOWNLOAD EBOOK

Plants depend on physiological mechanisms to combat adverse environmental conditions, such as pathogen attack, wounding, drought, cold, freezing, salt, UV, intense light, heavy metals and SO2. Many of these cause excess production of active oxygen species in plant cells. Plants have evolved complex defense systems against such oxidative stress. The


Plant Responses to Abiotic Stress

Plant Responses to Abiotic Stress

Author: Heribert Hirt

Publisher: Springer Science & Business Media

Published: 2003-10-08

Total Pages: 336

ISBN-13: 9783540200376

DOWNLOAD EBOOK

Environmental stresses represent the most limiting factors for agricultural productivity. Apart from biotic stress caused by plant pathogens, there are a number of abiotic stresses such as extremes in temperature, drought, salinity, heavy metals and radiation which all have detrimental effects on plant growth and yield. However, certain plant species and ecotypes have developed various mechanisms to adapt to such stress conditions. Recent advances in the understanding of these abiotic stress responses provided the impetus for compiling up-to-date reviews discussing all relevant topics in abiotic stress signaling of plants in a single volume. Topical reviews were prepared by selected experts and contain an introduction, discussion of the state of the art and important future tasks of the particular fields.


Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Author: Dharmendra K. Gupta

Publisher: Springer

Published: 2015-09-07

Total Pages: 373

ISBN-13: 3319204211

DOWNLOAD EBOOK

This book provides detailed and comprehensive information on oxidative damage caused by stresses in plants with especial reference to the metabolism of reactive oxygen species (ROS). In plants, as in all aerobic organisms, ROS are common by-products formed by the inevitable leakage of electrons onto O2 from the electron transport activities located in chloroplasts, mitochondria, peroxisomes and in plasma membranes or as a consequence of various metabolic pathways confined in different cellular loci. Environmental stresses such as heat, cold, drought, salinity, heavy-metal toxicity, ozone and ultraviolet radiation as well as pathogens/contagion attack lead to enhanced generation of ROS in plants due to disruption of cellular homeostasis. ROS play a dual role in plants; at low concentrations they act as signaling molecules that facilitate several responses in plant cells, including those promoted by biotic and abiotic agents. In divergence, at high levels they cause damage to cellular constituents triggering oxidative stress. In either case, small antioxidant molecules and enzymes modulate the action of these ambivalent species.


Nitric Oxide Action in Abiotic Stress Responses in Plants

Nitric Oxide Action in Abiotic Stress Responses in Plants

Author: M. Nasir Khan

Publisher: Springer

Published: 2015-04-20

Total Pages: 252

ISBN-13: 3319178040

DOWNLOAD EBOOK

This book offers an up-to-date review of the regulatory role of nitric oxide (NO) changes in the morphological, physio-biochemical as well as molecular characteristics of plants under abiotic stress. The first of two parts comprises four chapters and focuses on the properties, chemical reactions involving NO and reactive nitrogen species in plants. The second part, consisting of eleven chapters, describes the current understanding of the role of NO in the regulation of gene expression, NO signaling pathways and its role in the up-regulation of the endogenous defense system and programmed cell death. Furthermore, its interactions with other signaling molecules and plant hemoglobins under environmental and soil related abiotic stresses, including post-harvest stress in fruits, vegetables and ornamentals and wounding are discussed in detail. Together with the companion book Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, this volume provides a concise overview of the field and offers a valuable reference work for teachers and researchers in the fields of plant physiology, biochemistry and agronomy.


Redox Homeostasis in Plants

Redox Homeostasis in Plants

Author: Sanjib Kumar Panda

Publisher: Springer

Published: 2019-04-23

Total Pages: 198

ISBN-13: 331995315X

DOWNLOAD EBOOK

This book summarizes the latest research results on the role of reactive oxygen species (ROS) in plants, particularly in many abiotic stresses, and their regulation. Redox homeostasis refers to maintaining a balance of oxidised and reduced state of biomolecules in a biological system for all-round sustenance. In a living system, redox reactions contribute to the generation of reactive oxygen species (ROS), which act as signalling molecules for developmental as well as stress-response processes in plants. It is presumed that, being sessile and an aerobe requiring oxygen for mitochondrial energy production, as well as producing oxygen during photosynthesis, the redox homeostasis process is more complex and regulated in plants than in animals. Any imbalance in the homeostasis is mainly compensated for by the production of various ROS molecules, which, though they can cause severe oxidative damage in excess, can also ideally act as signalling molecules.