Optical Techniques for Integrated Control and Recording of Neural Activity

Optical Techniques for Integrated Control and Recording of Neural Activity

Author: Raag Dar Airan

Publisher: Stanford University

Published: 2010

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK

A long-standing objective of psychiatry has been the ability to both control and record the activity of precisely-defined populations of brain cells on the millisecond timescale most relevant for neural computation. Recent advances bring that goal increasingly near by leveraging the genetically-precise techniques of molecular biology with the high-speed, multiplexed command afforded by optical technologies to introduce and utilize light-sensitive neural activity control integrated with fast neural circuit imaging. In this thesis, I present exemplars of these technological advances and demonstrate their utility in illuminating the neural circuit basis of behaviors relevant to understanding psychiatric disease. I first show how fast neural circuit imaging may be integrated with optical neural control tools to develop insight into the role of genetically, developmentally, or projection defined populations of brain cells in mediating circuit-level physiological changes. I then demonstrate computational methods to analyze the resultant imaging data and apply fast circuit imaging to delineate links between hippocampal physiology and behavior in an animal model of depression. Finally, I present the development of a novel class of optically-activated, genetically-targetable control tools that permit optical control of G-protein coupled intracellular signaling; and the use of these molecular devices to determine causal roles of neuromodulatory inputs in reward processing. The development of these and similar optical modalities further improves the precision of questions addressable by the neuroscientist, and potentially the extent of disease treatable by the clinician.


Optical Techniques for Integrated Control and Recording of Neural Activity

Optical Techniques for Integrated Control and Recording of Neural Activity

Author: Raag Dar Airan

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A long-standing objective of psychiatry has been the ability to both control and record the activity of precisely-defined populations of brain cells on the millisecond timescale most relevant for neural computation. Recent advances bring that goal increasingly near by leveraging the genetically-precise techniques of molecular biology with the high-speed, multiplexed command afforded by optical technologies to introduce and utilize light-sensitive neural activity control integrated with fast neural circuit imaging. In this thesis, I present exemplars of these technological advances and demonstrate their utility in illuminating the neural circuit basis of behaviors relevant to understanding psychiatric disease. I first show how fast neural circuit imaging may be integrated with optical neural control tools to develop insight into the role of genetically, developmentally, or projection defined populations of brain cells in mediating circuit-level physiological changes. I then demonstrate computational methods to analyze the resultant imaging data and apply fast circuit imaging to delineate links between hippocampal physiology and behavior in an animal model of depression. Finally, I present the development of a novel class of optically-activated, genetically-targetable control tools that permit optical control of G-protein coupled intracellular signaling; and the use of these molecular devices to determine causal roles of neuromodulatory inputs in reward processing. The development of these and similar optical modalities further improves the precision of questions addressable by the neuroscientist, and potentially the extent of disease treatable by the clinician.


Modeling, Design and Test of an Integrated Optical Neural Recording Device

Modeling, Design and Test of an Integrated Optical Neural Recording Device

Author: Brendan Michael Crowley

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

It has long been a goal of neuroscientists to understand how electrophysiological activity in the nervous system corresponds to, and causes, specific physiological actions. Such knowledge could be used to develop cures for disabilities related to nervous system dysfunction, and to control artificial limbs or restore motion to a paralyzed patient. This has motivated research into technologies, broadly termed brain-machine interfaces, for interfacing with the nervous system. One category of such neural interfaces is implantable neural recording devices, which monitor and record neural signals through a microelectronic device implanted in the body. Typical implantable neural recording devices use a micro-electrode array to record electrical signals simultaneously from a multitude of neurons. Unfortunately, devices employing micro-electrode arrays have several issues from both the biological and circuit design points of view. These issues include tissue damage due to implantation of a micro-electrode array, degradation of recording fidelity over time, limited spatial resolution, the requirement to maintain charge balance in tissue, and the difficulty in implementing low-frequency (large time constant) filter cutoffs with limited chip area. These issues provided the motivation to investigate alternative methods for neural recording - namely optical methods based on fluorescence detection with voltage-sensitive fluorescent proteins. Optical recording methods can alleviate many of the issues with electrical recording, as well as provide other advantages, such as recording targeted to specific neurons/neuron types and higher spatial resolution due to reduced recording site pitch. The major limitations of fully implantable optical recording devices stem from size constraints, the attenuation of light in tissue, which limits imaging depth, and the need for genetically programmed voltage-sensitive fluorescent proteins, which must be introduced to the tissue in the case of chronic recording. This research began with investigating the feasibility of replacing an electrical neural record- ing front end with an optical front end - the conclusion being that producing an initial design was worthwhile. Thus, this thesis presents a prototype optical neural recording device for detecting individual spikes in Layer I of the brain. The device is designed for the fully implantable scenario, where space for typical fluorescence imaging optical components is limited, and a high level of integration is required. The thesis describes: 1) Modeling: a general framework for modeling near-field fluorescence detection systems is presented; the model is then extended and applied to the design of the optical neural recording device for detecting individual spikes in Layer I of the brain, taking into account light attenuation in tissue; 2) Design: the design of a high-sensitivity CMOS imaging chip used in the device; 3) Packaging: the packaging of the CMOS imager with LED dies and an excitation filter; and 4) Testing: the experimental results from testing the packaged device with a fluorescent tissue phantom designed to emulate layer I of the brain. Ideas for future work on such devices are discussed.


Basic Electrophysiological Methods

Basic Electrophysiological Methods

Author: Ellen Covey

Publisher: Oxford University Press

Published: 2015-02-25

Total Pages: 241

ISBN-13: 0199342547

DOWNLOAD EBOOK

Basic Electrophysiological Methods provides a concise and easy-to-read guide on a selection of the most important contemporary electrophysiological techniques, their implementation, applications, and ways in which they can be combined and integrated with neuroscientific techniques. Intended for students, postdocs, and faculty with a basic neuroscience background, this text will not obscure the relevant technical details with textbook neuroscience tutorials as many other books do. Instead, each chapter provides a conscientious overview of the underlying theory -- a comprehensive description of equipment, materials, methods, data management, and analysis -- a troubleshooting guide, and a list of frequently asked questions. No book or online resource can function as strictly a DIY set of instructions on how to implement a complex technique. However, this book provides a fundamental and accessible set of information intended to form a foundation prior to, during, and after hands-on experience and training, greatly facilitating the initial learning process and subsequent fine-tuning of technical details.


Optical Brain–Computer Interface

Optical Brain–Computer Interface

Author: Dechuan Sun

Publisher: CRC Press

Published: 2024-10-03

Total Pages: 119

ISBN-13: 1040260519

DOWNLOAD EBOOK

In this shortform book, Sun, French, and Unnithan explore state-of-the-art optical recording techniques, with a focus on the revolutionary miniaturized fluorescence microscope – the miniscope – for real-time and in vivo monitoring of multi-neuronal dynamics during cognition-related events. The miniscope is a powerful tool that allows real-time in vivo optical recording of multi-neuronal activity in freely moving animals. This book highlights the use of the miniscope in the context of the hippocampus, a brain region crucial for memory and cognition. The authors employ a combination of theoretical concepts, practical applications, and illustrative case studies to deliver a comprehensive understanding of optical recording techniques. They provide step-by-step guides for using the miniscope, offer insights into data analysis, and discuss its implications in the context of hippocampal research and brain–computer interfaces. Readers will gain profound insights into the role of the hippocampus in memory and cognition, and expert knowledge of the latest miniaturized in vivo optical recording techniques. The book provides them with thorough guidance on implementing a miniaturized fluorescence microscope for a brain–computer interface and information on advanced analysis techniques on the activity of large neuronal populations. This book provides an invaluable short and accessible guide for researchers, neuroscientists, and brain–computer interface enthusiasts to enable them to understand and leverage the immense potential of this advanced optical recording methodology.


Handbook of Neurophotonics

Handbook of Neurophotonics

Author: Francesco S. Pavone

Publisher: CRC Press

Published: 2020-05-10

Total Pages: 439

ISBN-13: 0429530900

DOWNLOAD EBOOK

The Handbook of Neurophotonics provides a dedicated overview of neurophotonics, covering the use of advanced optical technologies to record, stimulate, and control the activity of the brain, yielding new insight and advantages over conventional tools due to the adaptability and non-invasive nature of light. Including 32 colour figures, this book addresses functional studies of neurovascular signaling, metabolism, electrical excitation, and hemodynamics, as well as clinical applications for imaging and manipulating brain structure and function. The unifying theme throughout is not only to highlight the technology, but to show how these novel methods are becoming critical to breakthroughs that will lead to advances in our ability to manage and treat human diseases of the brain. Key Features: Provides the first dedicated book on state-of-the-art optical techniques for sensing and imaging across at the cellular, molecular, network, and whole brain levels. Highlights how the methods are used for measurement, control, and tracking of molecular events in live neuronal cells, both in basic research and clinical practice. Covers the entire spectrum of approaches, from optogenetics to functional methods, photostimulation, optical dissection, multiscale imaging, microscopy, and structural imaging. Includes chapters that show use of voltage-sensitive dye imaging, hemodynamic imaging, multiphoton imaging, temporal multiplexing, multiplane microscopy, optoacoustic imaging, near-infrared spectroscopy, and miniature neuroimaging devices to track cortical brain activity.


Optical Neural Interfaces

Optical Neural Interfaces

Author: Massimo De Vittorio

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Optogenetics

Optogenetics

Author: Peter Hegemann

Publisher: Walter de Gruyter

Published: 2013-08-28

Total Pages: 240

ISBN-13: 3110270722

DOWNLOAD EBOOK

Optogenetics combines genetic engineering with optics to observe and control the function of cells using light, with clinical implications for restoration of vision and treatment of neurological diseases. As a new discipline much of the basic science and methods are currently under investigation and active development, thus there is a strong need for introductory literature in this field. This graduate level textbook provides an overview of the field of optogenetics in 5 concise chapters: Optogenetic tools, Applications in cellular systems, Mapping neuronal networks, Clinical applications and Restoration of vision and hearing. The concept and content was developed with top international researchers and students at a prestigious Dahlem Conference workshop.


Molecular Neuroendocrinology

Molecular Neuroendocrinology

Author: David Murphy

Publisher: John Wiley & Sons

Published: 2016-01-19

Total Pages: 682

ISBN-13: 1119162181

DOWNLOAD EBOOK

Molecular Neuroendocrinology: From Genome to Physiology, provides researchers and students with a critical examination of the steps being taken to decipher genome complexity in the context of the expression, regulation and physiological functions of genes in neuroendocrine systems. The 19 chapters are divided into four sectors: A) describes and explores the genome, its evolution, expression and the mechanisms that contribute to protein, and hence biological, diversity. B) discusses the mechanisms that enhance peptide and protein diversity beyond what is encoded in the genome through post-translational modification. C) considers the molecular tools that today’s neuroendocrinologists can use to study the regulation and function of neuroendocrine genes within the context of the intact organism. D) presents a range of case studies that exemplify the state-of-the-art application of genomic technologies in physiological and behavioural experiments that seek to better understand complex biological processes. • Written by a team of internationally renowned researchers • Both print and enhanced e-book versions are available • Illustrated in full colour throughout This is the third volume in a new Series ‘Masterclass in Neuroendocrinology’ , a co- publication between Wiley and the INF (International Neuroendocrine Federation) that aims to illustrate highest standards and encourage the use of the latest technologies in basic and clinical research and hopes to provide inspiration for further exploration into the exciting field of neuroendocrinology. Series Editors: John A. Russell, University of Edinburgh, UK and William E. Armstrong, The University of Tennessee, USA